Calculating cohomology groups of moduli spaces of curves via algebraic geometry

Enrico Arbarello; Maurizio Cornalba

Publications Mathématiques de l'IHÉS (1998)

  • Volume: 88, page 97-127
  • ISSN: 0073-8301

How to cite

top

Arbarello, Enrico, and Cornalba, Maurizio. "Calculating cohomology groups of moduli spaces of curves via algebraic geometry." Publications Mathématiques de l'IHÉS 88 (1998): 97-127. <http://eudml.org/doc/104137>.

@article{Arbarello1998,
author = {Arbarello, Enrico, Cornalba, Maurizio},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {rational cohomology groups of moduli space of stable -pointed genus curves},
language = {eng},
pages = {97-127},
publisher = {Institut des Hautes Études Scientifiques},
title = {Calculating cohomology groups of moduli spaces of curves via algebraic geometry},
url = {http://eudml.org/doc/104137},
volume = {88},
year = {1998},
}

TY - JOUR
AU - Arbarello, Enrico
AU - Cornalba, Maurizio
TI - Calculating cohomology groups of moduli spaces of curves via algebraic geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Études Scientifiques
VL - 88
SP - 97
EP - 127
LA - eng
KW - rational cohomology groups of moduli space of stable -pointed genus curves
UR - http://eudml.org/doc/104137
ER -

References

top
  1. [1] E. ARBARELLO, M. CORNALBACombinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Alg. Geom. 5 (1996), 705-749. Zbl0886.14007MR99c:14033
  2. [2] M. BOGGI, M. PIKAART, Galois covers of moduli of curves, preprint 1997. Zbl0959.14010
  3. [3] M. CORNALBA, On the projectivity of the moduli spaces of curve, J. reine angew. Math. 443 (1993), 11-20. Zbl0781.14017MR94i:14031
  4. [4] P. DELIGNE, Théorie de Hodge III, I.H.E.S. Publ. Math. 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
  5. [5] C. FABER, Chow rings of moduli spaces of curves, thesis, Universiteit van Amsterdam, 1988. 
  6. [6] E. GETZLER, The semi-classical approximation for modular operads, Comm. Math. Phys. 194 (1998) 481-492. Zbl0912.18007MR99d:14017
  7. [7] E. GETZLER, Topological recursion relations in genus 2, math.AG/9801003. Zbl1021.81056
  8. [8] J. HARER, The second homology group of the mapping class group of an orientable surface, Inv. Math. 72 (1982), 221-239. Zbl0533.57003MR84g:57006
  9. [9] J. HARER, The virtual cohomological dimension of the mapping class group of an orientable surface, Inv. Math. 84 (1986), 157-176. Zbl0592.57009MR87c:32030
  10. [10] J. HARER, The third homology group of the moduli space of curves, Duke Math. J. 65 (1991), 25-55. Zbl0725.57005MR92d:57012
  11. [11] J. HARER, The fourth homology group of the moduli space of curves, to appear. Zbl0725.57005
  12. [12] J. HARRIS, David MUMFORD, On the Kodaira dimension of the moduli space of curves, Inv. Math. 67 (1982), 23-86. Zbl0506.14016MR83i:14018
  13. [13] S. KEEL, Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. AMS 330 (1992), 545-574. Zbl0768.14002MR92f:14003
  14. [14] E. LOOIJENGA, Cohomology of ℳ3 and ℳ¹3, in “Mapping class groups and moduli spaces of Riemann surfaces” (C.F. Bödigheimer and R. M. Hain, eds.), Contemp. Math. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 205-228. Zbl0814.14029MR94i:14032
  15. [15] E. LOOIJENGA, Smooth Deligne-Mumford compactifications by means of Prym level structures, J. Alg. Geom. 3 (1994), 283-293. Zbl0814.14030MR94m:14029
  16. [16] E. LOOIJENGA, Cellular decompositions of compactified moduli spaces of pointed curves, in “The Moduli Space of Curves” (R. Dijkgraaf, C. Faber, G. van der Geer, eds.), Progress in Mathematics 12, Birkhauser, Boston, (1995), 369-399. Zbl0862.14017MR96m:14031
  17. [17] D. MUMFORD, Stability of projective varieties, L'Ens. Math. 23 (1977), 39-110. Zbl0363.14003MR56 #8568
  18. [18] D. MUMFORD, Towards an enumerative geometry of the moduli space of curves, in “Arithmetic and Geometry”, (M. Artin, J. Tate, eds), 2, Birkhäuser, Boston (1983), 271-328. Zbl0554.14008MR85j:14046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.