Optimal stability and instability results for a class of nearly integrable Hamiltonian systems

Massimiliano Berti; Luca Biasco; Philippe Bolle

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 2, page 77-84
  • ISSN: 1120-6330

Abstract

top
We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) O µ -perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time T d = O 1 / μ log 1 / μ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time T d is optimal as a consequence of a general stability result proved via classical perturbation theory.

How to cite

top

Berti, Massimiliano, Biasco, Luca, and Bolle, Philippe. "Optimal stability and instability results for a class of nearly integrable Hamiltonian systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 77-84. <http://eudml.org/doc/252323>.

@article{Berti2002,
abstract = {We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_\{d\} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_\{d\}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.},
author = {Berti, Massimiliano, Biasco, Luca, Bolle, Philippe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Arnold diffusion; Variational methods; Shadowing theorem; Perturbation theory; Non-linear functional analysis; variational methods; perturbation theory; nonlinear functional analysis},
language = {eng},
month = {6},
number = {2},
pages = {77-84},
publisher = {Accademia Nazionale dei Lincei},
title = {Optimal stability and instability results for a class of nearly integrable Hamiltonian systems},
url = {http://eudml.org/doc/252323},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
AU - Bolle, Philippe
TI - Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 77
EP - 84
AB - We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_{d} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_{d}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.
LA - eng
KW - Arnold diffusion; Variational methods; Shadowing theorem; Perturbation theory; Non-linear functional analysis; variational methods; perturbation theory; nonlinear functional analysis
UR - http://eudml.org/doc/252323
ER -

References

top
  1. Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré - Analyse Non Lineaire, v. 15, n. 2, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
  2. Arnold, V.I., Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. Zbl0135.42602
  3. Berti, M. - Bolle, P., Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Rend. Mat. Acc. Lincei, s. 9, v. 11, 2000, 235-243. Zbl1009.37044MR1837581
  4. Berti, M. - Bolle, P., A functional analysis approach to Arnold’s diffusion. Ann. Inst. Henri Poincaré, Analyse Non Lineaire, to appear. Zbl1087.37048
  5. Berti, M. - Bolle, P., Fast Arnold’s diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, series A, v. 8, n. 3, july 2002, 795-811. Zbl1023.37033MR1897882DOI10.3934/dcds.2002.8.795
  6. Berti, M. - Biasco, L. - Bolle, P., Drift in phase space: a new variational mechanism with optimal diffusion time. SISSA 2002, preprint. Zbl1025.37037MR1996776DOI10.1016/S0021-7824(03)00032-1
  7. Bessi, U., An approach to Arnold diffusion through the calculus of variations. Nonlinear Analysis T. M. A., 26, 1996, 1115-1135. Zbl0867.70013MR1375654DOI10.1016/0362-546X(94)00270-R
  8. Bessi, U. - Chierchia, L. - Valdinoci, E., Upper Bounds on Arnold Diffusion Time via Mather theory. J. Math. Pures Appl., v. 80, 1, 2001, 105-129. Zbl0986.37052MR1810511DOI10.1016/S0021-7824(00)01188-0
  9. Biasco, L. - Chierchia, L., On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. Zbl1032.37039MR1952372
  10. Bourgain, J. - Golse, F. - Wennberg, B., On the distribution of free path lengths for periodic Lorentz gas. Comm. Math. Phys., v. 190, 1998, 491-508. Zbl0910.60082MR1600299DOI10.1007/s002200050249
  11. Chierchia, L. - Gallavotti, G., Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, section Physique Théorique, 60, 1994, 1-144; see also Erratum in v. 68, 1998, 135. Zbl1010.37039MR1259103
  12. Cresson, J., The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, v. 7, n. 4, 2001, 787-800. Zbl1018.37040MR1849660DOI10.3934/dcds.2001.7.787
  13. Cresson, J. - Guillet, C., Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, to appear. Zbl1031.37054MR1952386
  14. Marco, J.P., Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, v. 64, 1995, 205-252. Zbl0854.70011MR1386217
  15. Nekhoroshev, N.N., An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Mathematical Survey, 32, 1977. Zbl0389.70028MR501140
  16. Pöschel, J., Nekhoroshev estimates for quasi-convex Hamiltonian Systems. Math. Zeitschrift, 213, 1993, 187-216. Zbl0857.70009MR1221713DOI10.1007/BF03025718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.