Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
Massimiliano Berti; Luca Biasco; Philippe Bolle
- Volume: 13, Issue: 2, page 77-84
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBerti, Massimiliano, Biasco, Luca, and Bolle, Philippe. "Optimal stability and instability results for a class of nearly integrable Hamiltonian systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 77-84. <http://eudml.org/doc/252323>.
@article{Berti2002,
abstract = {We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_\{d\} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_\{d\}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.},
author = {Berti, Massimiliano, Biasco, Luca, Bolle, Philippe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Arnold diffusion; Variational methods; Shadowing theorem; Perturbation theory; Non-linear functional analysis; variational methods; perturbation theory; nonlinear functional analysis},
language = {eng},
month = {6},
number = {2},
pages = {77-84},
publisher = {Accademia Nazionale dei Lincei},
title = {Optimal stability and instability results for a class of nearly integrable Hamiltonian systems},
url = {http://eudml.org/doc/252323},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Berti, Massimiliano
AU - Biasco, Luca
AU - Bolle, Philippe
TI - Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 77
EP - 84
AB - We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_{d} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_{d}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.
LA - eng
KW - Arnold diffusion; Variational methods; Shadowing theorem; Perturbation theory; Non-linear functional analysis; variational methods; perturbation theory; nonlinear functional analysis
UR - http://eudml.org/doc/252323
ER -
References
top- Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré - Analyse Non Lineaire, v. 15, n. 2, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
- Arnold, V.I., Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. Zbl0135.42602
- Berti, M. - Bolle, P., Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Rend. Mat. Acc. Lincei, s. 9, v. 11, 2000, 235-243. Zbl1009.37044MR1837581
- Berti, M. - Bolle, P., A functional analysis approach to Arnold’s diffusion. Ann. Inst. Henri Poincaré, Analyse Non Lineaire, to appear. Zbl1087.37048
- Berti, M. - Bolle, P., Fast Arnold’s diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, series A, v. 8, n. 3, july 2002, 795-811. Zbl1023.37033MR1897882DOI10.3934/dcds.2002.8.795
- Berti, M. - Biasco, L. - Bolle, P., Drift in phase space: a new variational mechanism with optimal diffusion time. SISSA 2002, preprint. Zbl1025.37037MR1996776DOI10.1016/S0021-7824(03)00032-1
- Bessi, U., An approach to Arnold diffusion through the calculus of variations. Nonlinear Analysis T. M. A., 26, 1996, 1115-1135. Zbl0867.70013MR1375654DOI10.1016/0362-546X(94)00270-R
- Bessi, U. - Chierchia, L. - Valdinoci, E., Upper Bounds on Arnold Diffusion Time via Mather theory. J. Math. Pures Appl., v. 80, 1, 2001, 105-129. Zbl0986.37052MR1810511DOI10.1016/S0021-7824(00)01188-0
- Biasco, L. - Chierchia, L., On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. Zbl1032.37039MR1952372
- Bourgain, J. - Golse, F. - Wennberg, B., On the distribution of free path lengths for periodic Lorentz gas. Comm. Math. Phys., v. 190, 1998, 491-508. Zbl0910.60082MR1600299DOI10.1007/s002200050249
- Chierchia, L. - Gallavotti, G., Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, section Physique Théorique, 60, 1994, 1-144; see also Erratum in v. 68, 1998, 135. Zbl1010.37039MR1259103
- Cresson, J., The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, v. 7, n. 4, 2001, 787-800. Zbl1018.37040MR1849660DOI10.3934/dcds.2001.7.787
- Cresson, J. - Guillet, C., Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, to appear. Zbl1031.37054MR1952386
- Marco, J.P., Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, v. 64, 1995, 205-252. Zbl0854.70011MR1386217
- Nekhoroshev, N.N., An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Mathematical Survey, 32, 1977. Zbl0389.70028MR501140
- Pöschel, J., Nekhoroshev estimates for quasi-convex Hamiltonian Systems. Math. Zeitschrift, 213, 1993, 187-216. Zbl0857.70009MR1221713DOI10.1007/BF03025718
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.