A functional analysis approach to Arnold diffusion

Massimiliano Berti; Philippe Bolle

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 4, page 395-450
  • ISSN: 0294-1449

How to cite


Berti, Massimiliano, and Bolle, Philippe. "A functional analysis approach to Arnold diffusion." Annales de l'I.H.P. Analyse non linéaire 19.4 (2002): 395-450. <http://eudml.org/doc/78550>.

author = {Berti, Massimiliano, Bolle, Philippe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Arnold diffusion; shadowing theorem; splitting of separatrices; heteroclinic orbits; variational methods; nonlinear functional analysis},
language = {eng},
number = {4},
pages = {395-450},
publisher = {Elsevier},
title = {A functional analysis approach to Arnold diffusion},
url = {http://eudml.org/doc/78550},
volume = {19},
year = {2002},

AU - Berti, Massimiliano
AU - Bolle, Philippe
TI - A functional analysis approach to Arnold diffusion
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 4
SP - 395
EP - 450
LA - eng
KW - Arnold diffusion; shadowing theorem; splitting of separatrices; heteroclinic orbits; variational methods; nonlinear functional analysis
UR - http://eudml.org/doc/78550
ER -


  1. [1] Ambrosetti A., Badiale M., Homoclinics: Poincaré–Melnikov type results via a variational approach, Annales I.H.P., Analyse Nonlin.15 (2) (1998) 233-252. Zbl1004.37043MR1614571
  2. [2] Angenent S., A variational interpretation of Melnikov's function and exponentially small separatrix splitting, in: Salamon D. (Ed.), Symplectic Geometry, Lecture Notes of the London Math. Soc., 1993. Zbl0810.34037
  3. [3] Arnold V.I., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl.6 (1964) 581-585. Zbl0135.42602
  4. [4] Berti M., Bolle P., Homoclinics and chaotic behaviour for perturbed second order systems, Annali di Mat. Pura e Applicata, (IV)CLXXVI (1999) 323-378. Zbl0957.37019MR1746547
  5. [5] Berti M., Bolle P., Variational construction of homoclinics and chaotic behaviour in presence of a saddle–saddle equilibrium, Annali della Scuola Normale Superiore di Pisa, serie IVXXVII (2) (1998) 331-377. Zbl0938.34039MR1664692
  6. [6] Berti M., Bolle P., Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems, Rend. Mat. Acc. Naz. Lincei, s. 911 (4) (2000) 235-243. Zbl1009.37044MR1837581
  7. [7] Berti M., Bolle P., Fast Arnold's diffusion in systems with three time scales, Discrete and Continuous Dynamical Systems, to appear. Zbl1023.37033MR1897882
  8. [8] Bessi U., An approach to Arnold diffusion through the calculus of variations, Nonlinear Analysis T.M.A.26 (1996) 1115-1135. Zbl0867.70013MR1375654
  9. [9] Bessi U., Chierchia L., Valdinoci E., Upper bounds on Arnold diffusion times via Mather theory, J. Math. Pures Appl.80 (1) (2001) 105-129. Zbl0986.37052MR1810511
  10. [10] Biasco L., Stime analitiche sui tempi di instabilitá per perturbazioni di sistemi hamiltoniani degeneri, Tesi di Laurea, Univ. Roma 3, 1999. 
  11. [11] Bolotin S.V., Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., ser 2168 (1995) 21-90. Zbl0847.58024MR1351032
  12. [12] Bolotin S.V., Infinite number of homoclinic orbits to hyperbolic invariant tori of Hamiltonian systems, Regular and Chaotic Dynamics5 (2) (2000). Zbl1004.70018MR1780706
  13. [13] Bourgain J., Golse F., Wennberg B., On the distribution of free path lengths for periodic Lorentz gas, Comm. Math. Phys.190 (1998) 491-508. Zbl0910.60082MR1600299
  14. [14] Chierchia L., Arnold instability for nearly-integrable analytic hamiltonian systems, in: Ambrosetti A., Dell'Antonio G.F. (Eds.), Proceedings of the workshop “Variational and Local Methods in the Study of Hamiltonian Systems”, Trieste, 1994. Zbl0951.37036
  15. [15] Chierchia L., Gallavotti G., Drift and diffusion in phase space, Annales de l'IHP, section Physique Théorique60 (1994) 1-144, see also Erratum in Vol. 68 (1998) 135. Zbl1010.37039MR1259103
  16. [16] Chierchia L., Zehnder E., Asymptotic expansions of quasi-periodic motions, Annali della Scuola Normale Superiore di Pisa, serie IVXVI (1989) 245-258. Zbl0695.34040MR1041897
  17. [17] Chirikov B.V., A universal instability of many dimensional oscillator systems, Physics Reports52 (1979) 263-379. MR536429
  18. [18] Cresson J., A λ-lemma for partially hyperbolic tori and the obstruction property, Lett. Math. Phys.42 (1997) 363-377. Zbl0888.58045
  19. [19] Cresson J., Conjecture de Chirikov et optimalité des exposants de stabilité du théorème de Nekhoroshev, preprint Univ. Besançon. 
  20. [20] Cresson J., Guillet C., Periodic orbits and Arnold diffusion, preprint Univ. Besançon. Zbl1031.37054MR1952386
  21. [21] Delshams A., Gelfreich V.G., Jorba V.G., Seara T.M., Exponentially small splitting of separatrices under fast quasi-periodic forcing, Comm. Math. Phys.189 (1997) 35-71. Zbl0897.34042MR1478530
  22. [22] DelshamsA., Gutiérrez V., Homoclinic orbits to invariant tori in Hamiltonian systems, in: Jones C., Wiggins S., Khibnik A., Dumortier F., Terman D. (Eds.), Multiple-Time-Dynamical Systems, IMA Vol. in Math and its Applications, Springer-Verlag, to appear. Zbl1140.37355MR1846571
  23. [23] Delshams A., Seara T.M., An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys.150 (1992) 433-463. Zbl0765.70016MR1204314
  24. [24] Gallavotti G., Arnold's diffusion in isochronous systems, Mathematical Physics, Analysis and Geometry1 (1999) 295-312. Zbl0936.37031MR1692234
  25. [25] Gallavotti G., Gentile G., Mastropietro V., Separatrix splitting for systems with three time scales, Comm. Math. Phys.202 (1999) 197-236. Zbl0936.37034MR1686531
  26. [26] Gallavotti G., Gentile G., Mastropietro V., Melnikov approximation dominance. Some examples, Rev. Math. Phys11 (1999) 451-461. Zbl0983.37074MR1682687
  27. [27] Gallavotti G., Gentile G., Mastropietro V., On homoclinic splitting problems, Physica D137 (2000) 202-204. Zbl0997.37036MR1738773
  28. [28] Gallavotti G., Gentile G., Mastropietro V., Hamilton–Jacobi equation and existence of heteroclinic chains in three time scales systems, Nonlinearity13 (2000) 323-340. Zbl0989.37059MR1745371
  29. [29] Gelfreich V., Melnikov method and exponentially small splitting of separatrices, Physica D101 (1997) 227-248. Zbl0896.70011MR1433078
  30. [30] Gelfreich V., A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys.201 (1999) 155-216. Zbl1042.37044MR1669417
  31. [31] Gelfreich V., Separatrix splitting for a high-frequency perturbation of the pendulum, Russian J. Math. Phys.7 (1) (2000) 48-71. Zbl1066.34059MR1832773
  32. [32] Gentile G., A proof of existence of whiskered tori with quasi flat homoclinic intersection in a class of almost integrable systems, Forum Mathematicum7 (1995) 709-753. Zbl0841.58038MR1359423
  33. [33] Holmes P., Marsden J., Scheurle J., Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations, Contemp. Math.81 (1988) 213-244. Zbl0685.70017MR986267
  34. [34] Lazutkin V.F., Splitting of separatrices for the Chirikov's standard map, preprint VINITI 6372/84, 1984. MR1993024
  35. [35] Lochak P., Arnold diffusion: a compendium of remarks and questions, in: Proceedings of 3DHAM's Agaro, 1995. Zbl0986.37054
  36. [36] Lochak P., Marco J.P., Sauzin D., On the splitting of invariant manifolds in multidimensional Hamiltonian systems, preprint Université Jussieu. Zbl1038.70001
  37. [37] Marco J.P., Transitions le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques, Annales I.H.P.64 (1995) 205-252. Zbl0854.70011MR1386217
  38. [38] Pumarino P., Valls C., Three time scales systems exhibiting persistent Arnold Diffusion, preprint. Zbl1160.37387
  39. [39] Pumarino A., Valls C., Exponentially small splitting of separatrices in open sets of frequencies, preprint. Zbl1056.37079
  40. [40] Range R.M., Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, 1986. Zbl0591.32002MR847923
  41. [41] Rudnev M., Wiggins S., Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near integrable Hamiltonian systems, Physica D114 (1998) 3-80, See also Erratum in Physica D 145 (2000) 349–354. Zbl0997.37038MR1612043
  42. [42] Rudnev M., Wiggins S., On a homoclinic splitting problem, Regular and Chaotic Dynamics5 (2) (2000) 227-242. Zbl0996.37069MR1780715
  43. [43] Sauzin D., A new method for measuring the splitting of invariant manifolds, Ann. Scient. E.N.S, to appear. Zbl0987.37061MR1870269
  44. [44] Treschev D., Multidimensional symplectic separatrix maps, preprint. Zbl1022.37041MR1888569
  45. [45] Xia Z., Arnold diffusion: a variational construction, Documenta Matematica, extra vol. ICMII (1998) 867-877. Zbl0910.58015MR1648133

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.