Straightening cell decompositions of cusped hyperbolic 3-manifolds
- Volume: 9, Issue: 2, page 101-109
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topPescini, Marina. "Straightening cell decompositions of cusped hyperbolic 3-manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.2 (1998): 101-109. <http://eudml.org/doc/252329>.
@article{Pescini1998,
abstract = {Let \( M \) be an oriented cusped hyperbolic 3-manifold and let \( \tau \) be a topological ideal triangulation of \( M \). We give a characterization for \( \tau \) to be isotopic to an ideal geodesic triangulation; moreover we give a characterization for \( \tau \) to flatten into a partially flat triangulation. Finally we prove that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic decomposition, up to isometry.},
author = {Pescini, Marina},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hyperbolic 3-manifolds; Flat triangulations; Ideal cell decompositions; ideal geodesic triangulation; flat triangulations},
language = {eng},
month = {6},
number = {2},
pages = {101-109},
publisher = {Accademia Nazionale dei Lincei},
title = {Straightening cell decompositions of cusped hyperbolic 3-manifolds},
url = {http://eudml.org/doc/252329},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Pescini, Marina
TI - Straightening cell decompositions of cusped hyperbolic 3-manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/6//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 2
SP - 101
EP - 109
AB - Let \( M \) be an oriented cusped hyperbolic 3-manifold and let \( \tau \) be a topological ideal triangulation of \( M \). We give a characterization for \( \tau \) to be isotopic to an ideal geodesic triangulation; moreover we give a characterization for \( \tau \) to flatten into a partially flat triangulation. Finally we prove that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic decomposition, up to isometry.
LA - eng
KW - Hyperbolic 3-manifolds; Flat triangulations; Ideal cell decompositions; ideal geodesic triangulation; flat triangulations
UR - http://eudml.org/doc/252329
ER -
References
top- Benedetti, R. - Petronio, C., Lectures on Hyperbolic Geometry. Universitext, Springer-Verlag, Berlin-New York, 1992. Zbl0768.51018MR1219310DOI10.1007/978-3-642-58158-8
- Epstein, D. B. A. - Penner, R. C., Euclidean Decompositions of Noncompact Hyperbolic Manifolds. Journal Differential Geometry, 27, 1988, 67-80. Zbl0611.53036MR918457
- Petronio, C., Some remarks about straightening. Lectures given at Forschungsinstitut für Mathematik, ETH, Zürich, January 1994.
- Sullivan, D., On the Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions. In: I. Kra - B. Maskit (eds.), Riemann Surfaces and Related Topics. Ann. of Math. Studies, 97, Princeton Univ. Press, Princeton, NJ, 1981, 465-496. Zbl0567.58015MR624833
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.