Sets of finite perimeter associated with vector fields and polyhedral approximation

Francescopaolo Montefalcone

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 4, page 279-295
  • ISSN: 1120-6330

Abstract

top
Let X = X 1 , , X m be a family of bounded Lipschitz continuous vector fields on R n . In this paper we prove that if E is a set of finite X -perimeter then his X -perimeter is the limit of the X -perimeters of a sequence of euclidean polyhedra approximating E in L 1 -norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.

How to cite

top

Montefalcone, Francescopaolo. "Sets of finite perimeter associated with vector fields and polyhedral approximation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.4 (2003): 279-295. <http://eudml.org/doc/252332>.

@article{Montefalcone2003,
abstract = {Let $X = X_\{1\}, \cdots, X_\{m\}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb\{R\}^\{n\}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^\{1\}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.},
author = {Montefalcone, Francescopaolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Carnot-Carathéodory metric; Perimeter; Polyhedra; perimeter; polyhedra},
language = {eng},
month = {12},
number = {4},
pages = {279-295},
publisher = {Accademia Nazionale dei Lincei},
title = {Sets of finite perimeter associated with vector fields and polyhedral approximation},
url = {http://eudml.org/doc/252332},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Montefalcone, Francescopaolo
TI - Sets of finite perimeter associated with vector fields and polyhedral approximation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/12//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 4
SP - 279
EP - 295
AB - Let $X = X_{1}, \cdots, X_{m}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb{R}^{n}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^{1}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.
LA - eng
KW - Carnot-Carathéodory metric; Perimeter; Polyhedra; perimeter; polyhedra
UR - http://eudml.org/doc/252332
ER -

References

top
  1. AMBROSIO, L., Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. Zbl1002.28004MR1823840DOI10.1006/aima.2000.1963
  2. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000. Zbl0957.49001MR1857292
  3. AMBROSIO, L. - KIRCHHEIM, B., Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. Zbl0966.28002MR1800768DOI10.1007/s002080000122
  4. AMBROSIO, L. - KIRCHHEIM, B., Current in metric spaces. Acta Math., 185, 2000, 1-80. Zbl0984.49025MR1794185DOI10.1007/BF02392711
  5. BIROLI, M. - MOSCO, U., Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. Zbl0833.46020MR1354886DOI10.1007/BF01053449
  6. CACCIOPPOLI, R., Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. Zbl0048.03704MR47118
  7. CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. Zbl0864.46018MR1312686
  8. CHEEGER, J., Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. Zbl0942.58018MR1708448DOI10.1007/s000390050094
  9. DAVID, G. - SEMMES, S., Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997. Zbl0887.54001MR1616732
  10. DE GIORGI, E., Su una teoria generale della misura r - 1 -dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. Zbl0055.28504MR62214
  11. DE GIORGI, E., Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995. 
  12. DE GIORGI, E., Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: M. CHICCO et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova1994, 67-71. 
  13. FEDERER, H., Geometric Measure Theory. Springer-Verlag, New York1969. Zbl0874.49001MR257325
  14. FRANCHI, B. - GALLOT, S. - WHEEDEN, R.L., Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. Zbl0830.46027MR1314734DOI10.1007/BF01450501
  15. FRANCHI, B. - LU, G. - WHEEDEN, R.L., Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. Zbl0820.46026MR1343563
  16. FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. Zbl0876.49014MR1437714
  17. FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. Zbl1057.49032MR1871966DOI10.1007/s002080100228
  18. GAROFALO, N. - NHIEU, D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. Zbl0880.35032MR1404326DOI10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
  19. GIUSTI, E., Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston1985. Zbl0545.49018MR775682
  20. GROMOV, M., Carnot-Carathéodory spaces seen from within. In: A. BELLAÏCHE - J.-J. RISLER (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel1996, 79-323. Zbl0864.53025MR1421823
  21. MIRANDA JR, M., Functions of bounded variations on good metric spaces. Forhcoming 2000. Zbl1109.46030
  22. MONTI, R. - SERRA CASSANO, F., Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. Zbl1032.49045MR1865002DOI10.1007/s005260000076
  23. PREISS, D. - TISÊR, J., On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. Zbl0762.28003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.