Sets of finite perimeter associated with vector fields and polyhedral approximation
- Volume: 14, Issue: 4, page 279-295
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMontefalcone, Francescopaolo. "Sets of finite perimeter associated with vector fields and polyhedral approximation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.4 (2003): 279-295. <http://eudml.org/doc/252332>.
@article{Montefalcone2003,
abstract = {Let $X = X_\{1\}, \cdots, X_\{m\}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb\{R\}^\{n\}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^\{1\}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.},
author = {Montefalcone, Francescopaolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Carnot-Carathéodory metric; Perimeter; Polyhedra; perimeter; polyhedra},
language = {eng},
month = {12},
number = {4},
pages = {279-295},
publisher = {Accademia Nazionale dei Lincei},
title = {Sets of finite perimeter associated with vector fields and polyhedral approximation},
url = {http://eudml.org/doc/252332},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Montefalcone, Francescopaolo
TI - Sets of finite perimeter associated with vector fields and polyhedral approximation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/12//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 4
SP - 279
EP - 295
AB - Let $X = X_{1}, \cdots, X_{m}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb{R}^{n}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^{1}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.
LA - eng
KW - Carnot-Carathéodory metric; Perimeter; Polyhedra; perimeter; polyhedra
UR - http://eudml.org/doc/252332
ER -
References
top- AMBROSIO, L., Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. Zbl1002.28004MR1823840DOI10.1006/aima.2000.1963
- AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000. Zbl0957.49001MR1857292
- AMBROSIO, L. - KIRCHHEIM, B., Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. Zbl0966.28002MR1800768DOI10.1007/s002080000122
- AMBROSIO, L. - KIRCHHEIM, B., Current in metric spaces. Acta Math., 185, 2000, 1-80. Zbl0984.49025MR1794185DOI10.1007/BF02392711
- BIROLI, M. - MOSCO, U., Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. Zbl0833.46020MR1354886DOI10.1007/BF01053449
- CACCIOPPOLI, R., Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. Zbl0048.03704MR47118
- CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. Zbl0864.46018MR1312686
- CHEEGER, J., Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. Zbl0942.58018MR1708448DOI10.1007/s000390050094
- DAVID, G. - SEMMES, S., Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997. Zbl0887.54001MR1616732
- DE GIORGI, E., Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. Zbl0055.28504MR62214
- DE GIORGI, E., Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995.
- DE GIORGI, E., Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: M. CHICCO et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova1994, 67-71.
- FEDERER, H., Geometric Measure Theory. Springer-Verlag, New York1969. Zbl0874.49001MR257325
- FRANCHI, B. - GALLOT, S. - WHEEDEN, R.L., Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. Zbl0830.46027MR1314734DOI10.1007/BF01450501
- FRANCHI, B. - LU, G. - WHEEDEN, R.L., Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. Zbl0820.46026MR1343563
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. Zbl0876.49014MR1437714
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. Zbl1057.49032MR1871966DOI10.1007/s002080100228
- GAROFALO, N. - NHIEU, D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. Zbl0880.35032MR1404326DOI10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
- GIUSTI, E., Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston1985. Zbl0545.49018MR775682
- GROMOV, M., Carnot-Carathéodory spaces seen from within. In: A. BELLAÏCHE - J.-J. RISLER (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel1996, 79-323. Zbl0864.53025MR1421823
- MIRANDA JR, M., Functions of bounded variations on good metric spaces. Forhcoming 2000. Zbl1109.46030
- MONTI, R. - SERRA CASSANO, F., Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. Zbl1032.49045MR1865002DOI10.1007/s005260000076
- PREISS, D. - TISÊR, J., On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. Zbl0762.28003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.