Sobolev and isoperimetric inequalities for degenerate metrics.
B. Franchi; S. Gallot; R.L. Wheeden
Mathematische Annalen (1994)
- Volume: 300, Issue: 4, page 557-572
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topCitations in EuDML Documents
top- Roberto Monti, Some properties of Carnot-Carathéodory balls in the Heisenberg group
- Francescopaolo Montefalcone, Sets of finite perimeter associated with vector fields and polyhedral approximation
- Bruno Franchi, Richard Wheeden, Compensation couples and isoperimetric estimates for vector fields
- Daniele Morbidelli, Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
- Bruno Franchi, Guozhen Lu, Richard L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
- Francescopaolo Montefalcone, Some relations among volume, intrinsic perimeter and one-dimensional restrictions of functions in Carnot groups
- Bernd Kirchheim, Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
- Jean-Yves Chemin, Chao-Jian Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques
- Bruno Franchi, Cristian E. Gutiérrez, Richard L. Wheeden, Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators
- Giuseppe Di Fazio, Maria Stella Fanciullo, Gradient estimates for elliptic systems in Carnot-Carathéodory spaces