Bounded symmetric domains and derived geometric structures

Wilhelm Kaup

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 243-257
  • ISSN: 1120-6330

Abstract

top
Every homogeneous circular convex domain D C n (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group G = A u t D of all biholomorphic automorphisms of D and its isotropy subgroup K G L n , C at the origin (a maximal compact subgroup of G ). The group G acts in a natural way on the compact dual X of D (a certain compactification of C n that generalizes the Riemann sphere in case D is the unit disk in C ). Various authors have studied the orbit structure of the G -space X , here we are interested in the Cauchy-Riemann structure of the G -orbits in X (which in general are only real-analytic submanifolds of X ). Also, we discuss certain K -orbits in the Grassmannian of all linear subspaces of C n that are closely related to the geometry of the bounded symmetric domain D .

How to cite

top

Kaup, Wilhelm. "Bounded symmetric domains and derived geometric structures." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 243-257. <http://eudml.org/doc/252341>.

@article{Kaup2002,
abstract = {Every homogeneous circular convex domain $D \subset \mathbb\{C\}^\{n\}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb\{C\})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb\{C\}^\{n\}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb\{C\}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb\{C\}^\{n\}$ that are closely related to the geometry of the bounded symmetric domain $D$.},
author = {Kaup, Wilhelm},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Bounded symmetric domains; Lie groups; Jordan triple systems; CR-structures; Orbit structures; Grassmannians; bounded domains; orbit structures},
language = {eng},
month = {12},
number = {3-4},
pages = {243-257},
publisher = {Accademia Nazionale dei Lincei},
title = {Bounded symmetric domains and derived geometric structures},
url = {http://eudml.org/doc/252341},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Kaup, Wilhelm
TI - Bounded symmetric domains and derived geometric structures
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 243
EP - 257
AB - Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
LA - eng
KW - Bounded symmetric domains; Lie groups; Jordan triple systems; CR-structures; Orbit structures; Grassmannians; bounded domains; orbit structures
UR - http://eudml.org/doc/252341
ER -

References

top
  1. Aupetit, B., Sur les transformations qui conservent le spectre. 13th International Conference on Banach Algebras (Blaubeuren 1997), de Gruyter, Berlin1998, 55-78. Zbl0932.46038MR1656598
  2. Dieudonné, J., Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math., 1, 1949, 282-287. Zbl0032.10601MR29360
  3. Douady, A., Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, 16, 1966, 1-95. Zbl0146.31103MR203082
  4. Faulkner, J.R., On the Geometry of Inner Ideals. J. of Algebra, 26, 1973, 1-9. Zbl0285.17004MR367002
  5. Friedman, Y. - Russo, B., The Gelfand-Naimark theorem for JB*-triples. Duke Math. J., 53, 1986, 139-148. Zbl0637.46049MR835800DOI10.1215/S0012-7094-86-05308-1
  6. Frobenius, G., Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. I. Sitzungsberichte Königl. Preuss. Akad. Wiss., 1897, 994-1015. JFM28.0130.01
  7. Harris, L.A., Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, vol. 364, Springer-Verlag, Berlin-Heidelberg-New York1973. Zbl0293.46049MR407330
  8. Harris, L.A. - Kaup, W., Linear algebraic groups in infinite dimensions. Ill. J. Math., 21, 1977, 666-674. Zbl0385.22011MR460551
  9. Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York-San Francisco-London1978. Zbl0451.53038MR514561
  10. Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z., 183, 1983, 503-529. Zbl0519.32024MR710768DOI10.1007/BF01173928
  11. Kaup, W., Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II. Math. Ann., 257, 1981, 463-483; 262, 1983, 503-529. Zbl0482.32010MR639580DOI10.1007/BF01465868
  12. Kaup, W., On Grassmannians associated with JB*-triples. Math. Z., 236, 2001, 567-584. Zbl0988.46048MR1821305DOI10.1007/PL00004842
  13. Kaup, W. - Zaitsev, D., On Symmetric Cauchy-Riemann Manifolds. Adv. in Math., 149, 2000, 145-181. Zbl0954.32016MR1742704DOI10.1006/aima.1999.1863
  14. Kaup, W. - Zaitsev, D., On the CR-structure of compact group orbits associated with bounded symmetric domains. In preparation. Zbl1027.32032
  15. Koecher, M., An elementary approach to bounded symmetric domains. Rice Univ., Houston1969. Zbl0217.10901MR261032
  16. Korányi, A. - Wolf, J.A., Realization of hermitian symmetric spaces as generalized half planes. Ann. of Math., 81, 1965, 265-288. Zbl0137.27402MR174787
  17. Loos, O., Symmetric Spaces I/II. W. A. Benjamin, Inc., New York-Amsterdam1969. Zbl0175.48601
  18. Loos, O., Jordan Pairs. Lecture Notes in Mathematics, vo. 460, Springer-VerlagBerlin-Heidelberg-New York1975. Zbl0301.17003MR444721
  19. Loos, O., Bounded symmetric domains and Jordan pairs. Mathematical Lectures, University of California at Irvine, Irvine1977. 
  20. Springer, T.A., On the geometric algebra of the octave planes. Indag. Math., 24, 1962, 451-468. Zbl0113.35903MR142045
  21. Takeuchi, M., On orbits in a compact hermitian symmetric space. Am. J. Math., 90, 1968, 657-680. Zbl0181.24304MR245827
  22. Wolf, J.A., The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Am. Math., 75, 1969, 1121-1247. Zbl0183.50901MR251246
  23. Wolf, J.A., Fine Structure of Hermitian Symmetric Spaces. In: W.M. Boothby - G.L. Weiss (eds.), Symmetric Spaces. Pure and Applied Mathematics, 8, Marcel Dekker Inc., New York1972, 271- 357. Zbl0257.32014MR404716
  24. Upmeier, H., Symmetric Banach Manifolds and Jordan C*-Algebras. North-Holland1985. Zbl0561.46032MR776786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.