Bounded symmetric domains and derived geometric structures
- Volume: 13, Issue: 3-4, page 243-257
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topKaup, Wilhelm. "Bounded symmetric domains and derived geometric structures." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 243-257. <http://eudml.org/doc/252341>.
@article{Kaup2002,
abstract = {Every homogeneous circular convex domain $D \subset \mathbb\{C\}^\{n\}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb\{C\})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb\{C\}^\{n\}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb\{C\}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb\{C\}^\{n\}$ that are closely related to the geometry of the bounded symmetric domain $D$.},
author = {Kaup, Wilhelm},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Bounded symmetric domains; Lie groups; Jordan triple systems; CR-structures; Orbit structures; Grassmannians; bounded domains; orbit structures},
language = {eng},
month = {12},
number = {3-4},
pages = {243-257},
publisher = {Accademia Nazionale dei Lincei},
title = {Bounded symmetric domains and derived geometric structures},
url = {http://eudml.org/doc/252341},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Kaup, Wilhelm
TI - Bounded symmetric domains and derived geometric structures
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 243
EP - 257
AB - Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
LA - eng
KW - Bounded symmetric domains; Lie groups; Jordan triple systems; CR-structures; Orbit structures; Grassmannians; bounded domains; orbit structures
UR - http://eudml.org/doc/252341
ER -
References
top- Aupetit, B., Sur les transformations qui conservent le spectre. 13th International Conference on Banach Algebras (Blaubeuren 1997), de Gruyter, Berlin1998, 55-78. Zbl0932.46038MR1656598
- Dieudonné, J., Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math., 1, 1949, 282-287. Zbl0032.10601MR29360
- Douady, A., Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, 16, 1966, 1-95. Zbl0146.31103MR203082
- Faulkner, J.R., On the Geometry of Inner Ideals. J. of Algebra, 26, 1973, 1-9. Zbl0285.17004MR367002
- Friedman, Y. - Russo, B., The Gelfand-Naimark theorem for JB*-triples. Duke Math. J., 53, 1986, 139-148. Zbl0637.46049MR835800DOI10.1215/S0012-7094-86-05308-1
- Frobenius, G., Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. I. Sitzungsberichte Königl. Preuss. Akad. Wiss., 1897, 994-1015. JFM28.0130.01
- Harris, L.A., Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, vol. 364, Springer-Verlag, Berlin-Heidelberg-New York1973. Zbl0293.46049MR407330
- Harris, L.A. - Kaup, W., Linear algebraic groups in infinite dimensions. Ill. J. Math., 21, 1977, 666-674. Zbl0385.22011MR460551
- Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York-San Francisco-London1978. Zbl0451.53038MR514561
- Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z., 183, 1983, 503-529. Zbl0519.32024MR710768DOI10.1007/BF01173928
- Kaup, W., Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II. Math. Ann., 257, 1981, 463-483; 262, 1983, 503-529. Zbl0482.32010MR639580DOI10.1007/BF01465868
- Kaup, W., On Grassmannians associated with JB*-triples. Math. Z., 236, 2001, 567-584. Zbl0988.46048MR1821305DOI10.1007/PL00004842
- Kaup, W. - Zaitsev, D., On Symmetric Cauchy-Riemann Manifolds. Adv. in Math., 149, 2000, 145-181. Zbl0954.32016MR1742704DOI10.1006/aima.1999.1863
- Kaup, W. - Zaitsev, D., On the CR-structure of compact group orbits associated with bounded symmetric domains. In preparation. Zbl1027.32032
- Koecher, M., An elementary approach to bounded symmetric domains. Rice Univ., Houston1969. Zbl0217.10901MR261032
- Korányi, A. - Wolf, J.A., Realization of hermitian symmetric spaces as generalized half planes. Ann. of Math., 81, 1965, 265-288. Zbl0137.27402MR174787
- Loos, O., Symmetric Spaces I/II. W. A. Benjamin, Inc., New York-Amsterdam1969. Zbl0175.48601
- Loos, O., Jordan Pairs. Lecture Notes in Mathematics, vo. 460, Springer-VerlagBerlin-Heidelberg-New York1975. Zbl0301.17003MR444721
- Loos, O., Bounded symmetric domains and Jordan pairs. Mathematical Lectures, University of California at Irvine, Irvine1977.
- Springer, T.A., On the geometric algebra of the octave planes. Indag. Math., 24, 1962, 451-468. Zbl0113.35903MR142045
- Takeuchi, M., On orbits in a compact hermitian symmetric space. Am. J. Math., 90, 1968, 657-680. Zbl0181.24304MR245827
- Wolf, J.A., The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Am. Math., 75, 1969, 1121-1247. Zbl0183.50901MR251246
- Wolf, J.A., Fine Structure of Hermitian Symmetric Spaces. In: W.M. Boothby - G.L. Weiss (eds.), Symmetric Spaces. Pure and Applied Mathematics, 8, Marcel Dekker Inc., New York1972, 271- 357. Zbl0257.32014MR404716
- Upmeier, H., Symmetric Banach Manifolds and Jordan C*-Algebras. North-Holland1985. Zbl0561.46032MR776786
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.