Commutators and linearizations of isochronous centers
- Volume: 11, Issue: 2, page 81-98
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMazzi, Luisa, and Sabatini, Marco. "Commutators and linearizations of isochronous centers." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.2 (2000): 81-98. <http://eudml.org/doc/252342>.
@article{Mazzi2000,
abstract = {We study isochronous centers of some classes of plane differential systems. We consider systems with constant angular speed, both with homogeneous and nonhomogenous nonlinearities. We show how to construct linearizations and first integrals of such systems, if a commutator is known. Commutators are found for some classes of systems. The results obtained are used to prove the isochronicity of some classes of centers, and to find first integrals for a class of Liénard equations with isochronous centers.},
author = {Mazzi, Luisa, Sabatini, Marco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Polynomial systems; Isochronous centers; Commuting vector fields; Linearizations; First integrals; Liénard systems; isochronous center; Liénard system},
language = {eng},
month = {6},
number = {2},
pages = {81-98},
publisher = {Accademia Nazionale dei Lincei},
title = {Commutators and linearizations of isochronous centers},
url = {http://eudml.org/doc/252342},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Mazzi, Luisa
AU - Sabatini, Marco
TI - Commutators and linearizations of isochronous centers
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/6//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 2
SP - 81
EP - 98
AB - We study isochronous centers of some classes of plane differential systems. We consider systems with constant angular speed, both with homogeneous and nonhomogenous nonlinearities. We show how to construct linearizations and first integrals of such systems, if a commutator is known. Commutators are found for some classes of systems. The results obtained are used to prove the isochronicity of some classes of centers, and to find first integrals for a class of Liénard equations with isochronous centers.
LA - eng
KW - Polynomial systems; Isochronous centers; Commuting vector fields; Linearizations; First integrals; Liénard systems; isochronous center; Liénard system
UR - http://eudml.org/doc/252342
ER -
References
top- Chavarriga, J. - Sabatini, M., A survey of isochronous centers. Qualitative Theory of Dynamical Systems, 1, 1999, 1-70. MR1747197DOI10.1007/BF02969404
- Christopher, C. J. - Devlin, J., Isochronous centers in planar polynomial systems. SIAM Jour. Math. Anal., 28, 1997, 162-177. Zbl0881.34057MR1427732DOI10.1137/S0036141093259245
- Collins, C. B., Conditions for a center in a simple class of cubic systems. Diff. Int. Eq., 10, 1997, 333-356. Zbl0894.34022MR1424815
- Conti, R., On isochronous centers of cubic systems. Revue Roumaine de Mathématiques Pures et Appliquées, 39, 4, 1994, 295-301. Zbl0823.34033MR1317770
- Conti, R., Uniformly isochronous centers of polynomial systems in . In: K.D. Elworthy - W. Norrie Everitt - E. Bruce Lee (eds.), Differential equations, dynamical systems, and control science. Lecture Notes in Pure and Appl. Math., 152, M. Dekker, New York1994, 21-31. Zbl0795.34021MR1243191
- Conti, R., Centers of planar polynomial systems. A review. Le Matematiche, 53, 2, 1998, 207-240. Zbl1156.34315MR1710759
- Duff, G. F. D., Limit cycles and rotated vector fields. Ann. Math., 57, 1953, 15-31. Zbl0050.09103MR53301
- Farkas, M., Periodic Motions. Springer-Verlag, Berlin1994. Zbl0805.34037MR1299528
- Gasull, A. - Guillamon, A. - Mãnosa, V., Centre and isochronicity conditions for systems with homogeneous nonlinearities. In: M. Sofonea - J.N. Corvellec (eds.), Proceedings of the Catalan Days of Applied Mathematics, Presses Univ. de Perpignan, Perpignan, France, 1995, 105-116. Zbl0909.34030MR1609584
- Loud, W. S., Behavior of the period of solutions of certain plane autonomous systems near centers. Contr. Diff. Eq., III, 1, 1964, 21-36. Zbl0139.04301MR159985
- Mardešić, P. - Moser-Jauslin, L. - Rousseau, C., Darboux linearization and isochronous centers with a rational first integral. J. Differential Equations, 134, 1997, 216-268. Zbl0881.34041MR1432095DOI10.1006/jdeq.1996.3212
- Mardešić, P. - Rousseau, C. - Toni, B., Linearization of isochronous centers. J. Differential Equations, 121, 1995, 67-108. Zbl0830.34023MR1348536DOI10.1006/jdeq.1995.1122
- Pleshkan, I. I., New methods for investigating the isochronism of two differential equations. Diff. Uravneniya, V, 1969, 1083-1090 (in Russian). Zbl0169.42003
- Sabatini, M., Characterizing isochronous centers by Lie brackets. Diff. Eq. Dyn. Syst., 5, 1997, 91-99. Zbl0894.34021MR1656001
- Sabatini, M., Dynamics of commuting systems on two-dimensional manifolds. Ann. Mat. Pura Appl., CLXXIII (IV), 1997, 213-232. Zbl0941.34018MR1625543DOI10.1007/BF01783469
- Sabatini, M., On the period function of Liénard systems. J. Differential Equations, 152, 1999, 467-487. Zbl0922.34028MR1674565DOI10.1006/jdeq.1998.3520
- Villarini, M., Regularity properties of the period function near a center of a planar vector field. Nonlinear Analysis, T.M.A., 19, 1992, 787-803. Zbl0769.34033MR1186791DOI10.1016/0362-546X(92)90222-Z
- Villarini, M., Smooth linearizations of centers. To appear. Zbl1066.34032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.