Nesting maps of Grassmannians
Corrado De Concini; Zinovy Reichstein
- Volume: 15, Issue: 2, page 109-118
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDe Concini, Corrado, and Reichstein, Zinovy. "Nesting maps of Grassmannians." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 109-118. <http://eudml.org/doc/252343>.
@article{DeConcini2004,
abstract = {Let $F$ be a field and $Gr(i, F^\{n\})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^\{n\}$. A map $f : Gr(i, F^\{n\}) \rightarrow Gr(j, F^\{n\})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^\{n\})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb\{C\}^\{n\}) \rightarrow Gr(j, \mathbb\{C\}^\{n\})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^\{n\}) \rightarrow Gr(j, F^\{n\})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_\{F\}^\{n\}$.},
author = {De Concini, Corrado, Reichstein, Zinovy},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Grassmannian; Vector bundle; Cohomology ring; Chern class; Tangent bundle; vector bundle; cohomology ring; tangent bundle},
language = {eng},
month = {6},
number = {2},
pages = {109-118},
publisher = {Accademia Nazionale dei Lincei},
title = {Nesting maps of Grassmannians},
url = {http://eudml.org/doc/252343},
volume = {15},
year = {2004},
}
TY - JOUR
AU - De Concini, Corrado
AU - Reichstein, Zinovy
TI - Nesting maps of Grassmannians
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 109
EP - 118
AB - Let $F$ be a field and $Gr(i, F^{n})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^{n}$. A map $f : Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^{n})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb{C}^{n}) \rightarrow Gr(j, \mathbb{C}^{n})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_{F}^{n}$.
LA - eng
KW - Grassmannian; Vector bundle; Cohomology ring; Chern class; Tangent bundle; vector bundle; cohomology ring; tangent bundle
UR - http://eudml.org/doc/252343
ER -
References
top- BERGMAN, G., Can one factor the classical adjoint of a generic matrix? arXiv:math.AC/0306126. Zbl1109.15005MR2205070DOI10.1007/s00031-005-1101-x
- BOTT, R., On a topological obstruction to integrability. In: Global Analysis. Proc. Sympos. Pure Math., vol. XVI (Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 127-131. Zbl0206.50501MR266248
- CARRELL, J.B., Chern classes of the Grassmannians and Schubert calculus. Topology, 17, 1978, n. 2, 177-182. Zbl0398.14006MR469928
- FULTON, W., Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, Springer-Verlag, Berlin1984. Zbl0541.14005MR732620
- GLOVER, H.H. - HOMER, W.D. - STONG, R.E., Splitting the tangent bundle of projective space. Indiana Univ. Math. J., 31, 1982, n. 2, 161-166. Zbl0454.57013MR648168DOI10.1512/iumj.1982.31.31015
- GREENBERG, M.J. - HARPER, J.R., Algebraic topology: a first course. Mathematics lecture note series, 58, Benjamin Cummings Publishing Co., Reading, Mass., 1981. Zbl0498.55001MR643101
- GRIFFITHS, PH. - HARRIS, J., Principles of algebraic geometry. Pure and Applied Mathematics, Wiley-Interscience, New York1978. Zbl0836.14001MR507725
- HILLER, H., Geometry of Coxeter groups. Research notes in mathematics series, 54, Pitman Advanced Publishing Program, Boston, Mass., 1982. Zbl0483.57002MR649068
- HIRZEBRUCH, F., Topological methods in algebraic geometry. Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag, New York1966. Zbl0376.14001MR202713
- OKONEK, C. - SCHNEIDER, M. - SPINDLER, H., Vector bundles on complex projective spaces. Birkhäuser, Boston, Mass., 1980. Zbl0438.32016MR561910
- ROAN, S.S., Subbundles of the tangent bundle of complex projective space. Bull. Inst. Math. Acad. Sinica, 9, 1981, n. 1, 1-28. Zbl0487.14004MR614641
- RYSER, H.J., Combinatorial mathematics. Carus mathematical monographs, n. 14, The Mathematical Association of America, New York1963. Zbl0112.24806MR150048
- STONG, R.E., Splitting the universal bundles over Grassmannians. In: G.M. RASSIAS (ed.), Algebraic and differential topology. Global differential geometry. Teubner-Texte Math., 70, Teubner, Leipzig1984, 275-287. Zbl0569.55009MR792701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.