Nesting maps of Grassmannians

Corrado De Concini; Zinovy Reichstein

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 2, page 109-118
  • ISSN: 1120-6330

Abstract

top
Let F be a field and G r i , F n be the Grassmannian of i -dimensional linear subspaces of F n . A map f : G r i , F n G r j , F n is called nesting if l f l for every l G r i , F n . Glover, Homer and Stong showed that there are no continuous nesting maps G r i , C n G r j , C n except for a few obvious ones. We prove a similar result for algebraic nesting maps G r i , F n G r j , F n , where F is an algebraically closed field of arbitrary characteristic. For i = 1 this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space P F n .

How to cite

top

De Concini, Corrado, and Reichstein, Zinovy. "Nesting maps of Grassmannians." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 109-118. <http://eudml.org/doc/252343>.

@article{DeConcini2004,
abstract = {Let $F$ be a field and $Gr(i, F^\{n\})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^\{n\}$. A map $f : Gr(i, F^\{n\}) \rightarrow Gr(j, F^\{n\})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^\{n\})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb\{C\}^\{n\}) \rightarrow Gr(j, \mathbb\{C\}^\{n\})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^\{n\}) \rightarrow Gr(j, F^\{n\})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_\{F\}^\{n\}$.},
author = {De Concini, Corrado, Reichstein, Zinovy},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Grassmannian; Vector bundle; Cohomology ring; Chern class; Tangent bundle; vector bundle; cohomology ring; tangent bundle},
language = {eng},
month = {6},
number = {2},
pages = {109-118},
publisher = {Accademia Nazionale dei Lincei},
title = {Nesting maps of Grassmannians},
url = {http://eudml.org/doc/252343},
volume = {15},
year = {2004},
}

TY - JOUR
AU - De Concini, Corrado
AU - Reichstein, Zinovy
TI - Nesting maps of Grassmannians
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 109
EP - 118
AB - Let $F$ be a field and $Gr(i, F^{n})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^{n}$. A map $f : Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^{n})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb{C}^{n}) \rightarrow Gr(j, \mathbb{C}^{n})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_{F}^{n}$.
LA - eng
KW - Grassmannian; Vector bundle; Cohomology ring; Chern class; Tangent bundle; vector bundle; cohomology ring; tangent bundle
UR - http://eudml.org/doc/252343
ER -

References

top
  1. BERGMAN, G., Can one factor the classical adjoint of a generic matrix? arXiv:math.AC/0306126. Zbl1109.15005MR2205070DOI10.1007/s00031-005-1101-x
  2. BOTT, R., On a topological obstruction to integrability. In: Global Analysis. Proc. Sympos. Pure Math., vol. XVI (Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 127-131. Zbl0206.50501MR266248
  3. CARRELL, J.B., Chern classes of the Grassmannians and Schubert calculus. Topology, 17, 1978, n. 2, 177-182. Zbl0398.14006MR469928
  4. FULTON, W., Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, Springer-Verlag, Berlin1984. Zbl0541.14005MR732620
  5. GLOVER, H.H. - HOMER, W.D. - STONG, R.E., Splitting the tangent bundle of projective space. Indiana Univ. Math. J., 31, 1982, n. 2, 161-166. Zbl0454.57013MR648168DOI10.1512/iumj.1982.31.31015
  6. GREENBERG, M.J. - HARPER, J.R., Algebraic topology: a first course. Mathematics lecture note series, 58, Benjamin Cummings Publishing Co., Reading, Mass., 1981. Zbl0498.55001MR643101
  7. GRIFFITHS, PH. - HARRIS, J., Principles of algebraic geometry. Pure and Applied Mathematics, Wiley-Interscience, New York1978. Zbl0836.14001MR507725
  8. HILLER, H., Geometry of Coxeter groups. Research notes in mathematics series, 54, Pitman Advanced Publishing Program, Boston, Mass., 1982. Zbl0483.57002MR649068
  9. HIRZEBRUCH, F., Topological methods in algebraic geometry. Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag, New York1966. Zbl0376.14001MR202713
  10. OKONEK, C. - SCHNEIDER, M. - SPINDLER, H., Vector bundles on complex projective spaces. Birkhäuser, Boston, Mass., 1980. Zbl0438.32016MR561910
  11. ROAN, S.S., Subbundles of the tangent bundle of complex projective space. Bull. Inst. Math. Acad. Sinica, 9, 1981, n. 1, 1-28. Zbl0487.14004MR614641
  12. RYSER, H.J., Combinatorial mathematics. Carus mathematical monographs, n. 14, The Mathematical Association of America, New York1963. Zbl0112.24806MR150048
  13. STONG, R.E., Splitting the universal bundles over Grassmannians. In: G.M. RASSIAS (ed.), Algebraic and differential topology. Global differential geometry. Teubner-Texte Math., 70, Teubner, Leipzig1984, 275-287. Zbl0569.55009MR792701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.