Boccardo, Lucio. "Positive solutions for some quasilinear elliptic equations with natural growths." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 31-39. <http://eudml.org/doc/252345>.
@article{Boccardo2000,
abstract = {We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
$$
\begin\{cases\}
- \text\{div\} ((1+ |u|^\{r\}) \nabla u) + |u|^\{m-2\} u |\nabla u|^\{2\} = f \quad &\text\{in\} \, \Omega \\
u = 0 &\text\{su\} \, \partial\Omega.
\end\{cases\}
$$},
author = {Boccardo, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients},
language = {eng},
month = {3},
number = {1},
pages = {31-39},
publisher = {Accademia Nazionale dei Lincei},
title = {Positive solutions for some quasilinear elliptic equations with natural growths},
url = {http://eudml.org/doc/252345},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Boccardo, Lucio
TI - Positive solutions for some quasilinear elliptic equations with natural growths
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 31
EP - 39
AB - We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
$$
\begin{cases}
- \text{div} ((1+ |u|^{r}) \nabla u) + |u|^{m-2} u |\nabla u|^{2} = f \quad &\text{in} \, \Omega \\
u = 0 &\text{su} \, \partial\Omega.
\end{cases}
$$
LA - eng
KW - Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients
UR - http://eudml.org/doc/252345
ER -