Positive solutions for some quasilinear elliptic equations with natural growths

Lucio Boccardo

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: 1, page 31-39
  • ISSN: 1120-6330

Abstract

top
We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is - div 1 + u r u + u m - 2 u u 2 = f in Ω u = 0 su Ω .

How to cite

top

Boccardo, Lucio. "Positive solutions for some quasilinear elliptic equations with natural growths." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 31-39. <http://eudml.org/doc/252345>.

@article{Boccardo2000,
abstract = {We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is $$ \begin\{cases\} - \text\{div\} ((1+ |u|^\{r\}) \nabla u) + |u|^\{m-2\} u |\nabla u|^\{2\} = f \quad &\text\{in\} \, \Omega \\ u = 0 &\text\{su\} \, \partial\Omega. \end\{cases\} $$},
author = {Boccardo, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients},
language = {eng},
month = {3},
number = {1},
pages = {31-39},
publisher = {Accademia Nazionale dei Lincei},
title = {Positive solutions for some quasilinear elliptic equations with natural growths},
url = {http://eudml.org/doc/252345},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Boccardo, Lucio
TI - Positive solutions for some quasilinear elliptic equations with natural growths
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 31
EP - 39
AB - We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is $$ \begin{cases} - \text{div} ((1+ |u|^{r}) \nabla u) + |u|^{m-2} u |\nabla u|^{2} = f \quad &\text{in} \, \Omega \\ u = 0 &\text{su} \, \partial\Omega. \end{cases} $$
LA - eng
KW - Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients
UR - http://eudml.org/doc/252345
ER -

References

top
  1. Benilan, P. - Boccardo, L. - Gallouët, T. - Gariepy, R. - Pierre, M. - Vazquez, J. L., An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 1995, 241-273. Zbl0866.35037MR1354907
  2. Bensoussan, A. - Boccardo, L. - Murat, F., On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 1988, 347-364. Zbl0696.35042MR963104
  3. Boccardo, L., Calcolo delle Variazioni. Roma 1 University PhD course, 1996. 
  4. Boccardo, L., Some nonlinear Dirichlet problems in L 1 involving lower order terms in divergence form. In: A. Alvino et al. (eds), Progress in elliptic and parabolic partial differential equations (Capri, 1994). Pitman Res. Notes Math. Ser., 350, Longman, Harlow1996, 43-57. Zbl0889.35034MR1430139
  5. Boccardo, L. - Gallouët, T., Strongly nonlinear elliptic equations having natural growth terms and L 1 data. Nonlinear Anal., 19, 1992, 573-579. Zbl0795.35031MR1183664DOI10.1016/0362-546X(92)90022-7
  6. Boccardo, L. - Gallouët, T. - Orsina, L., Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math., 73, 1997, 203-223. Zbl0898.35035MR1616410DOI10.1007/BF02788144
  7. Boccardo, L. - Murat, F. - Puel, J.-P., Existence de solutions non bornées pour certaines équations quasi-lineaires. Portugal. Math., 41, 1982, 507-534. Zbl0524.35041MR766873
  8. Boccardo, L. - Murat, F. - Puel, J.-P., L estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal., 23, 1992, 326-333. Zbl0785.35033MR1147866DOI10.1137/0523016
  9. Brezis, H. - Browder, F. E., Some properties of higher order Sobolev spaces. J. Math. Pures Appl., 61, 1982, 245-259. Zbl0512.46034MR690395
  10. Brezis, H. - Nirenberg, L., Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal., 9, 1997, 201-219. Zbl0905.35027MR1491843
  11. Dacorogna, B., Direct methods in the calculus of variations. Applied Mathematical Sciences, 78. Springer-Verlag, Berlin-New York1989. Zbl0703.49001MR990890
  12. Del Vecchio, T., Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math., 16, 1990, 7-24. Zbl0714.35035MR1071263
  13. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris1969. Zbl0189.40603
  14. Porretta, A., Some remarks on the regularity of solutions for a class of elliptic equations with measure data. Preprint, Dip. Mat. Roma 1. Zbl0974.35032MR1814734
  15. Porretta, A., Existence for elliptic equations in L 1 having lower order terms with natural growth. Preprint, Dip. Mat. Roma 1. Zbl0963.35068MR1759814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.