Positive solutions for some quasilinear elliptic equations with natural growths
- Volume: 11, Issue: 1, page 31-39
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBoccardo, Lucio. "Positive solutions for some quasilinear elliptic equations with natural growths." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 31-39. <http://eudml.org/doc/252345>.
@article{Boccardo2000,
abstract = {We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
$$
\begin\{cases\}
- \text\{div\} ((1+ |u|^\{r\}) \nabla u) + |u|^\{m-2\} u |\nabla u|^\{2\} = f \quad &\text\{in\} \, \Omega \\
u = 0 &\text\{su\} \, \partial\Omega.
\end\{cases\}
$$},
author = {Boccardo, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients},
language = {eng},
month = {3},
number = {1},
pages = {31-39},
publisher = {Accademia Nazionale dei Lincei},
title = {Positive solutions for some quasilinear elliptic equations with natural growths},
url = {http://eudml.org/doc/252345},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Boccardo, Lucio
TI - Positive solutions for some quasilinear elliptic equations with natural growths
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 31
EP - 39
AB - We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
$$
\begin{cases}
- \text{div} ((1+ |u|^{r}) \nabla u) + |u|^{m-2} u |\nabla u|^{2} = f \quad &\text{in} \, \Omega \\
u = 0 &\text{su} \, \partial\Omega.
\end{cases}
$$
LA - eng
KW - Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations; natural growth coefficients
UR - http://eudml.org/doc/252345
ER -
References
top- Benilan, P. - Boccardo, L. - Gallouët, T. - Gariepy, R. - Pierre, M. - Vazquez, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 1995, 241-273. Zbl0866.35037MR1354907
- Bensoussan, A. - Boccardo, L. - Murat, F., On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 1988, 347-364. Zbl0696.35042MR963104
- Boccardo, L., Calcolo delle Variazioni. Roma 1 University PhD course, 1996.
- Boccardo, L., Some nonlinear Dirichlet problems in involving lower order terms in divergence form. In: A. Alvino et al. (eds), Progress in elliptic and parabolic partial differential equations (Capri, 1994). Pitman Res. Notes Math. Ser., 350, Longman, Harlow1996, 43-57. Zbl0889.35034MR1430139
- Boccardo, L. - Gallouët, T., Strongly nonlinear elliptic equations having natural growth terms and data. Nonlinear Anal., 19, 1992, 573-579. Zbl0795.35031MR1183664DOI10.1016/0362-546X(92)90022-7
- Boccardo, L. - Gallouët, T. - Orsina, L., Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math., 73, 1997, 203-223. Zbl0898.35035MR1616410DOI10.1007/BF02788144
- Boccardo, L. - Murat, F. - Puel, J.-P., Existence de solutions non bornées pour certaines équations quasi-lineaires. Portugal. Math., 41, 1982, 507-534. Zbl0524.35041MR766873
- Boccardo, L. - Murat, F. - Puel, J.-P., estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal., 23, 1992, 326-333. Zbl0785.35033MR1147866DOI10.1137/0523016
- Brezis, H. - Browder, F. E., Some properties of higher order Sobolev spaces. J. Math. Pures Appl., 61, 1982, 245-259. Zbl0512.46034MR690395
- Brezis, H. - Nirenberg, L., Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal., 9, 1997, 201-219. Zbl0905.35027MR1491843
- Dacorogna, B., Direct methods in the calculus of variations. Applied Mathematical Sciences, 78. Springer-Verlag, Berlin-New York1989. Zbl0703.49001MR990890
- Del Vecchio, T., Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math., 16, 1990, 7-24. Zbl0714.35035MR1071263
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris1969. Zbl0189.40603
- Porretta, A., Some remarks on the regularity of solutions for a class of elliptic equations with measure data. Preprint, Dip. Mat. Roma 1. Zbl0974.35032MR1814734
- Porretta, A., Existence for elliptic equations in having lower order terms with natural growth. Preprint, Dip. Mat. Roma 1. Zbl0963.35068MR1759814
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.