Page 1 Next

Displaying 1 – 20 of 253

Showing per page

3D-2D asymptotic analysis for micromagnetic thin films

Roberto Alicandro, Chiara Leone (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Γ -convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure Ω ε = ω × ( - ε , ε ) , ω 2 , whose energy is given by ε ( m ¯ ) = 1 ε Ω ε W ( m ¯ , m ¯ ) + 1 2 u ¯ · m ¯ d x subject to div ( - u ¯ + m ¯ χ Ω ε ) = 0 on 3 , and to the constraint | m ¯ | = 1 on Ω ε , where W is any continuous function satisfying p -growth assumptions with p > 1 . Partial results are also obtained in the case p = 1 , under an additional assumption on W .

3D-2D Asymptotic Analysis for Micromagnetic Thin Films

Roberto Alicandro, Chiara Leone (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Γ-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness ε approaches zero of a ferromagnetic thin structure Ω ε = ω × ( - ε , ε ) , ω 2 , whose energy is given by ε ( m ¯ ) = 1 ε Ω ε W ( m ¯ , m ¯ ) + 1 2 u ¯ · m ¯ d x subject to div ( - u ¯ + m ¯ χ Ω ε ) = 0 on 3 , and to the constraint | m ¯ | = 1 on Ω ε , where W is any continuous function satisfying p-growth assumptions with p> 1. Partial results are also obtained in the case p=1, under an additional assumption on W.

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

About boundary terms in higher order theories

Lorenzo Fatibene, Mauro Francaviglia, S. Mercadante (2011)

Communications in Mathematics

It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...

About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1,1 domains

Laurent Bourgeois (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with C1,1 boundary. It is an extension of an earlier result of [Phung, ESAIM: COCV9 (2003) 621–635] for domains of class C∞. Our estimate is established by using a Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces...

An algorithm for hybrid regularizers based image restoration with Poisson noise

Cong Thang Pham, Thi Thu Thao Tran (2021)

Kybernetika

In this paper, a hybrid regularizers model for Poissonian image restoration is introduced. We study existence and uniqueness of minimizer for this model. To solve the resulting minimization problem, we employ the alternating minimization method with rigorous convergence guarantee. Numerical results demonstrate the efficiency and stability of the proposed method for suppressing Poisson noise.

Currently displaying 1 – 20 of 253

Page 1 Next