Limit Weierstrass schemes on stable curves with 2 irreducible components

Marc Coppens; Letterio Gatto

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 4, page 205-228
  • ISSN: 1120-6330

Abstract

top
We are concerned with limits of Weierstrass points under degeneration of smooth curves to stable curves of non compact type, union of two irreducible smooth components meeting transversely at m 1 points. The case m = 1 having already been treated by Eisenbud and Harris in [8], we analyze the situation for m > 1 .

How to cite

top

Coppens, Marc, and Gatto, Letterio. "Limit Weierstrass schemes on stable curves with 2 irreducible components." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.4 (2001): 205-228. <http://eudml.org/doc/252357>.

@article{Coppens2001,
abstract = {We are concerned with limits of Weierstrass points under degeneration of smooth curves to stable curves of non compact type, union of two irreducible smooth components meeting transversely at $m \ge 1$ points. The case $m = 1$ having already been treated by Eisenbud and Harris in [8], we analyze the situation for $m > 1$.},
author = {Coppens, Marc, Gatto, Letterio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Stable curves of non compact type; Limits of Weierstrass points on reducible curves; Limit Weierstraßschemes; stable curves of non compact type; limits of Weierstrass points on reducible curves},
language = {eng},
month = {12},
number = {4},
pages = {205-228},
publisher = {Accademia Nazionale dei Lincei},
title = {Limit Weierstrass schemes on stable curves with 2 irreducible components},
url = {http://eudml.org/doc/252357},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Coppens, Marc
AU - Gatto, Letterio
TI - Limit Weierstrass schemes on stable curves with 2 irreducible components
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/12//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 4
SP - 205
EP - 228
AB - We are concerned with limits of Weierstrass points under degeneration of smooth curves to stable curves of non compact type, union of two irreducible smooth components meeting transversely at $m \ge 1$ points. The case $m = 1$ having already been treated by Eisenbud and Harris in [8], we analyze the situation for $m > 1$.
LA - eng
KW - Stable curves of non compact type; Limits of Weierstrass points on reducible curves; Limit Weierstraßschemes; stable curves of non compact type; limits of Weierstrass points on reducible curves
UR - http://eudml.org/doc/252357
ER -

References

top
  1. Arbarello, E., Weierstrass Points and Moduli of Curves. Compositio Mathematica, 29-3, 1974, 325-342. Zbl0355.14013MR360601
  2. Arbarello, E. - Cornalba, M. - Griffiths, P.A. - Harris, J., Geometry of Algebraic Curves. Vol. 1, Springer-Verlag, 1984. Zbl0559.14017
  3. Cukierman, F., Families of Weierstrass points. Duke Math. J., 58, n. 2, 1989, 317-346. Zbl0687.14026MR1016424DOI10.1215/S0012-7094-89-05815-8
  4. Diaz, S., Exceptional Weierstrass points and the divisor on moduli space that they define. Vol. 56, number 327, Memoirs of the AMS, 1985. Zbl0581.14018MR791679
  5. Deligne, P. - Mumford, D., On the irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S., 36, 1969, 75-109. Zbl0181.48803MR262240
  6. Eisenbud, D. - Harris, J., Divisor on general curves and cuspidal rational curves. Invent. Math., 74, 1983, 371-418. Zbl0527.14022MR724011DOI10.1007/BF01394242
  7. Eisenbud, D. - Harris, J., Limit linear series: Basic theory. Invent. Math., 85, 1986, 337-371. Zbl0598.14003MR846932DOI10.1007/BF01389094
  8. Eisenbud, D. - Harris, J., Existence, decomposition and limits of certain Weierstrass points. Invent. Math., 87, 1987, 495-515. Zbl0606.14014MR874034DOI10.1007/BF01389240
  9. Esteves, E., Wronski Algebra systems on families of singular curves. Ann. Scient. Ec. Norm. Sup. (4), 29, 1996, 107-134. Zbl0872.14025MR1368706
  10. Esteves, E., Limit Weierstrass points on general two-component curves. Preprint, 1998. 
  11. Esteves, E. - Medeiros, N., Limits of Weierstrass points in regular smoothings of curves with two components. C. R. Acad. Sci. Paris, Série I Math., 330, 2000, 873-878. Zbl0972.14024MR1771950DOI10.1016/S0764-4442(00)00294-9
  12. Esteves, E. - Medeiros, N., Limit canonical systems on curves with two components. Preprint 2000, arXiv: math. AG/008108. Zbl1046.14012MR1918674DOI10.1007/s002220200211
  13. Farkas, H. - Kra, I., Riemann Surfaces. GTM, 71, Springer-Verlag, 1984. Zbl0475.30001MR1139765DOI10.1007/978-1-4612-2034-3
  14. Forster, O., Lectures on Riemann Surfaces. Springer-Verlag, 1984. Zbl0475.30002MR1185074
  15. Gatto, L., Weight Sequences versus Gap Sequences at Singular Points of Gorenstein Curves. Geom. Dedicata, 54, 1995, 267-300. Zbl0847.14017MR1326732DOI10.1007/BF01265343
  16. Gatto, L., On the closure in M ¯ g of Smooth Curves having a Special Weierstrass Point. Math. Scand., 88, 2001, 41-71. Zbl1029.14009MR1813519
  17. Grothendieck, A., Techniques de construction et théorèmes d’existence en géométrie algébrique IV. Les schémas de Hilbert. Séminaire Bourbaki, 221, 1960/61. Zbl0236.14003
  18. Griffiths, P. - Harris, J., Principles of Algebraic Geometry. John Wiley & Sons, 1978. Zbl0836.14001MR507725
  19. Gunning, R.C., Lectures on Riemann Surfaces. Princeton Mathematical Notes, 1966. Zbl0387.32008MR207977
  20. Hartshorne, R., Algebraic Geometry. Springer-Verlag, 1977. Zbl0531.14001MR463157
  21. Harris, J. - Mumford, D., On the Kodaira Dimension of the Moduli Space of Curves. Invent. Math., 67, 1982, 23-86. Zbl0506.14016MR664324DOI10.1007/BF01393371
  22. Lax, R.F., Weierstrass Weight and Degeneration. Proc. Amer. Math. Soc., 101, 1987, 8-10. Zbl0634.14020MR897062DOI10.2307/2046542
  23. Lang, S., Algebra. 3rd ed., Addison-Wesley, 1994. Zbl0193.34701MR197234
  24. Widland, C. - Lax, R., Weierstrass Points on Gorenstein Curves. Pacific J. Math., 142, n. 1, 1990, 197-208. Zbl0661.14024MR1038736

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.