Wronski algebra systems on families of singular curves

E. Esteves

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 1, page 107-134
  • ISSN: 0012-9593

How to cite

top

Esteves, E.. "Wronski algebra systems on families of singular curves." Annales scientifiques de l'École Normale Supérieure 29.1 (1996): 107-134. <http://eudml.org/doc/82402>.

@article{Esteves1996,
author = {Esteves, E.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Wronski systems; Weierstrass points; families of curves; complete intersections},
language = {eng},
number = {1},
pages = {107-134},
publisher = {Elsevier},
title = {Wronski algebra systems on families of singular curves},
url = {http://eudml.org/doc/82402},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Esteves, E.
TI - Wronski algebra systems on families of singular curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 1
SP - 107
EP - 134
LA - eng
KW - Wronski systems; Weierstrass points; families of curves; complete intersections
UR - http://eudml.org/doc/82402
ER -

References

top
  1. [1] D. BUCHSBAUM and D. EISENBUD, What makes a complex exact ? (J. Algebra, Vol. 25, 1973, pp. 259-268). Zbl0264.13007MR47 #3369
  2. [2] D. EISENBUD and J. HARRIS, Limit linear series : basic theory (Inventiones Math., Vol. 85, 1986, pp. 337-371). Zbl0598.14003MR87k:14024
  3. [3] E. ESTEVES, The presentation functor and Weierstrass theory for families of local complete intersection curves (M.I.T. Ph. D. Thesis, 1994). 
  4. [4] A. GARCIA and R. LAX, Weierstrass points on Gorenstein curves in arbitrary characteristic (Preprint). Zbl0824.14033
  5. [5] A. GROTHENDIECK and J. DIEUDONNÉ, Éléments de Géométrie Algébrique (Publ. Math. I.H.E.S., Vol. 24, 28, 32, 1965-1967). 
  6. [6] S. KLEIMAN, Relative duality for quasi-coherent sheaves (Compositio Mathematica, Vol. 41, 1980, pp. 39-60). Zbl0403.14003MR81m:14017
  7. [7] D. LAKSOV, Weierstrass points on curves (Astérisque, Vol. 87, 1981, pp. 221-247). Zbl0489.14007MR83e:14023
  8. [8] D. LAKSOV, Wronskians and Plücker formulas for linear systems on curves (Ann. Sci. École Norm. Sup., Vol. 17, 1984, pp. 45-66). Zbl0555.14008MR85k:14016
  9. [9] D. LAKSOV and A. THORUP, The Brill-Segre formula for families of curves (Contemporary Mathematics, Vol. 123, 1991, pp. 131-148). Zbl0763.14013MR92k:14029
  10. [10] D. LAKSOV and A. THORUP, Weierstrass points and gap sequences for families of curves (To appear in Ark. Math.). Zbl0839.14020
  11. [11] S. LANG, Introduction to Arakelov theory (Springer-Verlag, 1988). Zbl0667.14001MR89m:11059
  12. [12] R. LAX, On the distribution of Weierstrass points on singular curves (Israel J. Math., Vol. 57, 1987, pp. 107-115). Zbl0628.14026MR88c:14025
  13. [13] R. LAX, Weierstrass weights and degenerations (Proc. Amer. Math. Soc., Vol. 101, 1987, pp. 8-10). Zbl0634.14020MR88e:14039
  14. [14] H. MATSUMURA, Commutative ring theory (Cambridge studies in advanced mathematics, Vol. 8, 1986). Zbl0603.13001MR88h:13001
  15. [15] B. MATZAT, Ein Vortrag über Weierstrasspunkte (Karlsruhe, 1975). 
  16. [16] D. G. NORTHCOTT, Some remarks on the theory of ideals defined by matrices (Q. Jl. Math. Oxford, (2), Vol. 14, 1963, pp. 193-204). Zbl0116.02504MR27 #1467
  17. [17] F. K. SCHMIDT, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern (Math. Z., Vol. 45, 1939, pp. 62-74). Zbl0020.10201JFM65.0115.02
  18. [18] F. K. SCHMIDT, Zur arithmetischen Theorie der algebraischen Funktionen II (Math. Z., Vol. 45, 1939, pp. 75-96). Zbl0020.10202JFM65.0116.01
  19. [19] J.-P. SERRE, Groupes algébriques et corps de classes (Hermann, Paris, 1959). Zbl0097.35604MR21 #1973
  20. [20] C. WIDLAND, On Weierstrass points of Gorenstein curves (Louisiana State University Ph. D. Thesis, 1984). 

NotesEmbed ?

top

You must be logged in to post comments.