Wronski algebra systems on families of singular curves

E. Esteves

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 1, page 107-134
  • ISSN: 0012-9593

How to cite

top

Esteves, E.. "Wronski algebra systems on families of singular curves." Annales scientifiques de l'École Normale Supérieure 29.1 (1996): 107-134. <http://eudml.org/doc/82402>.

@article{Esteves1996,
author = {Esteves, E.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Wronski systems; Weierstrass points; families of curves; complete intersections},
language = {eng},
number = {1},
pages = {107-134},
publisher = {Elsevier},
title = {Wronski algebra systems on families of singular curves},
url = {http://eudml.org/doc/82402},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Esteves, E.
TI - Wronski algebra systems on families of singular curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 1
SP - 107
EP - 134
LA - eng
KW - Wronski systems; Weierstrass points; families of curves; complete intersections
UR - http://eudml.org/doc/82402
ER -

References

top
  1. [1] D. BUCHSBAUM and D. EISENBUD, What makes a complex exact ? (J. Algebra, Vol. 25, 1973, pp. 259-268). Zbl0264.13007MR47 #3369
  2. [2] D. EISENBUD and J. HARRIS, Limit linear series : basic theory (Inventiones Math., Vol. 85, 1986, pp. 337-371). Zbl0598.14003MR87k:14024
  3. [3] E. ESTEVES, The presentation functor and Weierstrass theory for families of local complete intersection curves (M.I.T. Ph. D. Thesis, 1994). 
  4. [4] A. GARCIA and R. LAX, Weierstrass points on Gorenstein curves in arbitrary characteristic (Preprint). Zbl0824.14033
  5. [5] A. GROTHENDIECK and J. DIEUDONNÉ, Éléments de Géométrie Algébrique (Publ. Math. I.H.E.S., Vol. 24, 28, 32, 1965-1967). 
  6. [6] S. KLEIMAN, Relative duality for quasi-coherent sheaves (Compositio Mathematica, Vol. 41, 1980, pp. 39-60). Zbl0403.14003MR81m:14017
  7. [7] D. LAKSOV, Weierstrass points on curves (Astérisque, Vol. 87, 1981, pp. 221-247). Zbl0489.14007MR83e:14023
  8. [8] D. LAKSOV, Wronskians and Plücker formulas for linear systems on curves (Ann. Sci. École Norm. Sup., Vol. 17, 1984, pp. 45-66). Zbl0555.14008MR85k:14016
  9. [9] D. LAKSOV and A. THORUP, The Brill-Segre formula for families of curves (Contemporary Mathematics, Vol. 123, 1991, pp. 131-148). Zbl0763.14013MR92k:14029
  10. [10] D. LAKSOV and A. THORUP, Weierstrass points and gap sequences for families of curves (To appear in Ark. Math.). Zbl0839.14020
  11. [11] S. LANG, Introduction to Arakelov theory (Springer-Verlag, 1988). Zbl0667.14001MR89m:11059
  12. [12] R. LAX, On the distribution of Weierstrass points on singular curves (Israel J. Math., Vol. 57, 1987, pp. 107-115). Zbl0628.14026MR88c:14025
  13. [13] R. LAX, Weierstrass weights and degenerations (Proc. Amer. Math. Soc., Vol. 101, 1987, pp. 8-10). Zbl0634.14020MR88e:14039
  14. [14] H. MATSUMURA, Commutative ring theory (Cambridge studies in advanced mathematics, Vol. 8, 1986). Zbl0603.13001MR88h:13001
  15. [15] B. MATZAT, Ein Vortrag über Weierstrasspunkte (Karlsruhe, 1975). 
  16. [16] D. G. NORTHCOTT, Some remarks on the theory of ideals defined by matrices (Q. Jl. Math. Oxford, (2), Vol. 14, 1963, pp. 193-204). Zbl0116.02504MR27 #1467
  17. [17] F. K. SCHMIDT, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern (Math. Z., Vol. 45, 1939, pp. 62-74). Zbl0020.10201JFM65.0115.02
  18. [18] F. K. SCHMIDT, Zur arithmetischen Theorie der algebraischen Funktionen II (Math. Z., Vol. 45, 1939, pp. 75-96). Zbl0020.10202JFM65.0116.01
  19. [19] J.-P. SERRE, Groupes algébriques et corps de classes (Hermann, Paris, 1959). Zbl0097.35604MR21 #1973
  20. [20] C. WIDLAND, On Weierstrass points of Gorenstein curves (Louisiana State University Ph. D. Thesis, 1984). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.