Monotonicity and symmetry of solutions of -Laplace equations, , via the moving plane method
Lucio Damascelli; Filomena Pacella
- Volume: 9, Issue: 2, page 95-100
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDamascelli, Lucio, and Pacella, Filomena. "Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.2 (1998): 95-100. <http://eudml.org/doc/252359>.
@article{Damascelli1998,
abstract = {We present some monotonicity and symmetry results for positive solutions of the equation \( - \text\{div\} ( |Du| ^\{p-2\} Du ) = f (u) \) satisfying an homogeneous Dirichlet boundary condition in a bounded domain \( \Omega \). We assume 1 < p < 2 and \( f \) locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if \( \Omega \) is a ball then the solutions are radially symmetric and strictly radially decreasing.},
author = {Damascelli, Lucio, Pacella, Filomena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {p-Laplace equations; Monotonicity and symmetry of positive solutions; Moving plane method; -Laplace equations; monotonicity and symmetry of solutions of -Laplace equations; moving plane method},
language = {eng},
month = {6},
number = {2},
pages = {95-100},
publisher = {Accademia Nazionale dei Lincei},
title = {Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method},
url = {http://eudml.org/doc/252359},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Damascelli, Lucio
AU - Pacella, Filomena
TI - Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/6//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 2
SP - 95
EP - 100
AB - We present some monotonicity and symmetry results for positive solutions of the equation \( - \text{div} ( |Du| ^{p-2} Du ) = f (u) \) satisfying an homogeneous Dirichlet boundary condition in a bounded domain \( \Omega \). We assume 1 < p < 2 and \( f \) locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if \( \Omega \) is a ball then the solutions are radially symmetric and strictly radially decreasing.
LA - eng
KW - p-Laplace equations; Monotonicity and symmetry of positive solutions; Moving plane method; -Laplace equations; monotonicity and symmetry of solutions of -Laplace equations; moving plane method
UR - http://eudml.org/doc/252359
ER -
References
top- Badiale, M. - Nabana, E., A note on radiality of solutions of -laplacian equations. Appl. Anal., 52, 1994, 35-43. Zbl0841.35008MR1380325DOI10.1080/00036819408840222
- Brock, F., Continuous Rearrangement and symmetry of solutions of elliptic problems. Habilitation thesis, Cologne1997. Zbl0965.49002
- Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré, in press. Zbl0911.35009
- Damascelli, L. - Pacella, F., Monotonicity and symmetry of solutions of -Laplace equations, 1 < p < 2, via the moving plane method. Ann. Scuola Norm. Sup. Pisa, in press. Zbl0930.35070
- DiBenedetto, E., local regularity of weak solutions of degenerate elliptic equations. Nonlinear An. T.M.A., 7 (8), 1983, 827-850. Zbl0539.35027MR709038DOI10.1016/0362-546X(83)90061-5
- Gidas, B. - Ni, W. M. - Nirenberg, L., Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. Zbl0425.35020MR544879
- Grossi, M. - Kesavan, S. - Pacella, F. - Ramaswami, M., Symmetry of positive solutions of some nonlinear equations. Topological Methods in Nonlinear Analysis, to appear. Zbl0927.35039
- Kesavan, S. - Pacella, F., Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequality. Appl. Anal., 54, 1994, 27-37. Zbl0833.35040MR1382205DOI10.1080/00036819408840266
- Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq., 51, 1984, 126-150. Zbl0488.35017MR727034DOI10.1016/0022-0396(84)90105-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.