The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
- Volume: 15, Issue: 3-4, page 281-300
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVázquez, Juan Luis. "The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 281-300. <http://eudml.org/doc/252362>.
@article{Vázquez2004,
abstract = {We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.},
author = {Vázquez, Juan Luis},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Blow-up; Semilinear heat equations; Thermal avalanche},
language = {eng},
month = {12},
number = {3-4},
pages = {281-300},
publisher = {Accademia Nazionale dei Lincei},
title = {The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation},
url = {http://eudml.org/doc/252362},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Vázquez, Juan Luis
TI - The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 281
EP - 300
AB - We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.
LA - eng
KW - Blow-up; Semilinear heat equations; Thermal avalanche
UR - http://eudml.org/doc/252362
ER -
References
top- ANDERSON, M., Geometrization of -Manifolds via the Ricci Flow. Notices of the AMS, 51, 2, 2004, 184-193. Zbl1161.53350MR2026939
- BANDLE, C. - BRUNER, H., Blow-up in diffusion equations: A survey. J. Comput. Appl. Math., 97, 1998, 3-22. Zbl0932.65098MR1651764DOI10.1016/S0377-0427(98)00100-9
- BARAS, P. - COHEN, L., Complete blow-up after for the solution of a semilinear heat equation. J. Funct. Anal., 71, 1987, 142-174. Zbl0653.35037MR879705DOI10.1016/0022-1236(87)90020-6
- BEBERNES, J. - EBERLY, D., Mathematical Problems from Combustion Theory. Applied Mathematics Series, 83, Springer-Verlag, New York1989. Zbl0692.35001MR1012946
- BEBERNES, J. - LI, C.-M. - LI, YI, Travelling fronts in cylinders and their stability. Rocky Mountain J. Math., 27, 1997, 123-150. Zbl0913.35068MR1453095DOI10.1216/rmjm/1181071953
- BUCKMASTER, J.D. - LUDFORD, G.S.S., Lectures on Mathematical Combustion. CBMS-NSF Regional Conf. Series Appl. Math., 43, SIAM, Philadelphia1983. Zbl0574.76001MR765073DOI10.1137/1.9781611970272
- CHASSEIGNE, E. - VÁZQUEZ, J.L., Theory of extended solutions for fast diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal., 164, 2002, n. 2, 133-187. Zbl1018.35048MR1929929DOI10.1007/s00205-002-0210-0
- FILA, M. - MATANO, H., Connecting equilibria by blow-up solutions. In: International Conference on Differential Equations (Berlin 1999). 2 voll., World Sci. Publishing, River Edge, NJ2000, 741-743. Zbl0969.35082MR1870227
- FRIEDMAN, A., Remarks on nonlinear parabolic equations. In: Applications of Nonlinear Partial Differential Equations in Mathematical Physics. Amer. Math. Soc., Providence, RI, 1965, 3-23. Zbl0192.19601MR186938
- FUJITA, H., On the blowing-up of solutions of the Cauchy problem for . J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 13, 1966, 109-124. Zbl0163.34002MR214914
- FUJITA, H., On the nonlinear equations . Bull. Amer. Math. Soc., 75, 1969, 132-135. Zbl0216.12101MR239258
- GALAKTIONOV, V.A. - POSASHKOV, S.A., The equation . Localization, asymptotic behaviour of unbounded solutions. Keldysh Inst. Appl. Math. Acad. Sci. USSR, Preprint n. 97, 1985 (in Russian). MR832277
- GALAKTIONOV, V.A. - POSASHKOV, S.A., Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations. Diff. Urav., 22, 1986, 1165-1173. Zbl0632.35028MR853803
- GALAKTIONOV, V.A. - VÁZQUEZ, J.L., Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations. Arch. Rational Mech. Anal., 129, 1995, 225-244. Zbl0827.35055MR1328477DOI10.1007/BF00383674
- GALAKTIONOV, V.A. - VÁZQUEZ, J.L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math., 50, 1997, 1-67. Zbl0874.35057
- GALAKTIONOV, V.A. - VÁZQUEZ, J.L., Incomplete blow-up and singular interfaces for quasilinear heat equations. Comm. Partial Differ. Equat., 22, 1997, 1405-1452. Zbl1023.35057MR1469577DOI10.1080/03605309708821306
- GALAKTIONOV, V.A. - VÁZQUEZ, J.L., The problem of blow-up in nonlinear parabolic equations. In: C. CONCA - M. DEL PINO - P. FELMER - R. MANÁSEVICH (eds.), Current Developments in PDE (a special issue: Proceedings of the Summer Course in Temuco, Chile, jan. 1999). Discrete Contin. Dynam. Systems, A, 8, 2, 2002, 399-433. Zbl1010.35057MR1897690DOI10.3934/dcds.2002.8.399
- GIGA, Y. - KOHN, R.V., Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 38, 1985, 297-319. Zbl0585.35051MR784476DOI10.1002/cpa.3160380304
- GIGA, Y. - KOHN, R.V., Characterizing blow-up using similarity variables. Indiana Univ. Math. J., 36, 1987, 1-40. Zbl0601.35052MR876989DOI10.1512/iumj.1987.36.36001
- GIGA, Y. - KOHN, R.V., Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math., 42, 1989, 845-884. Zbl0703.35020MR1003437DOI10.1002/cpa.3160420607
- HAMILTON, R., Three manifolds of positive Ricci curvature. J. Differential Geom., 17, 1982, 255-306. Zbl0504.53034MR664497
- HAMILTON, R., The formation of singularities in the Ricci flow. Surveys in Differential Geometry, vol. 2, International Press, 1955, 7-136. Zbl0867.53030MR1375255
- KAPLAN, S., On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math., 16, 1963, 305-330. Zbl0156.33503MR160044
- KAZDAN, J.L. - WARNER, F.W., Curvature functions for compact 2-manifolds. Annals of Math., 99, 1974, 14-47. Zbl0273.53034MR343205
- KOLMOGOROV, A.N. - PETROVSKII, I.G. - PISKUNOV, N.S., A study of a diffusion equation coupled with the growth in the amount of a material, and its application to a biological problem. Byull. Moskov. Gos. Univ., Sect. A, 1, n. 6, 1937, 1-26.
- LACEY, A.A. - TZANETIS, D., Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition. IMA J. Appl. Math., 42, 1988, 207-215. Zbl0699.35151MR984007DOI10.1093/imamat/41.3.207
- LACEY, A.A. - TZANETIS, D., Global, unbounded solutions to a parabolic equation. J. Differ. Equat., 101, 1993, 80-102. Zbl0799.35123MR1199484DOI10.1006/jdeq.1993.1006
- LEPIN, L.A., Self-similar solutions of a semilinear heat equation. Mathematical Modelling, 2, 1990, 63-74 (in Russian). Zbl0972.35506MR1059601
- LEVINE, H.A., Quenching, nonquenching and beyond quenching for solutions of some parabolic equations. Ann. Mat. Pura Appl., 155, 1989, 243-290 (also, Quenching and beyond: a survey of recent results. Proc. Int. Conf. on Nonlinear Mathematical Problems in Science and Industry (Iwaki, 1992), GAKUTOInternat. Ser. Math. Sci. and Appl., vol. II, Tokyo 1993, 501-512). Zbl0743.35010MR1042837DOI10.1007/BF01765943
- MASUDA, K., Analytic solutions of some nonlinear diffusion equations. Math. Z., 187, 1984, 61-73. Zbl0526.35044MR753420DOI10.1007/BF01163166
- MERLE, F. - ZAAG, H., Stability of the blow-up profile for equations of the type . Duke Math. J., 86, 1997, 143-195. Zbl0872.35049MR1427848DOI10.1215/S0012-7094-97-08605-1
- OSGOOD, W.F., Beweis der Existenz einer Lösung der Differentialgleichung ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung. Monatshefte für Mathematik und Physik (Vienna), 9, 1898, 331-345. MR1546565JFM29.0260.03
- PERAL, I. - VÁZQUEZ, J.L., On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rat. Mech. Anal., 129, 1995, 201-224. Zbl0821.35080MR1328476DOI10.1007/BF00383673
- QUIRÓS, F. - ROSSI, J.D. - VÁZQUEZ, J.L., Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions. Comm. Partial Differential Equations, 27, 2002, 395-424. Zbl0996.35036MR1886965DOI10.1081/PDE-120002791
- QUIRÓS, F. - ROSSI, J.D. - VÁZQUEZ, J.L., Thermal avalanche for blow-up solutions of semilinear heat equations. Comm. Pure Appl. Math., 57, 2004, n. 1, 59-98. Zbl1036.35084MR2007356DOI10.1002/cpa.10112
- SAMARSKII, A.A. - GALAKTIONOV, V.A. - KURDYUMOV, S.P. - MIKHAILOV, A.P., Blow-up in problems for quasilinear parabolic equations. Nauka, Moscow1987 (in Russian; English transl.: Walter de Gruyter, Berlin1995). Zbl1020.35001
- SMOLLER, J., Shock-Waves and Reaction-Diffusion Equations. Springer-Verlag, New York1983. Zbl0807.35002MR688146
- VÁZQUEZ, J.L., Domain of existence and blowup for the exponential reaction-diffusion equation. Indiana Univ. Math. J., 48, 2, 1999, 677-709. Zbl0928.35080MR1722813DOI10.1512/iumj.1999.48.1581
- VÁZQUEZ, J.L., Asymptotic behaviour for the in the whole space. J. Evol. Equ., 3, 2003, n. 1, 67-118. Zbl1036.35108
- VELÁZQUEZ, J.J.L., Classification of singularities for blowing-up solutions in higher dimensions. Trans. Amer. Math. Soc., 338, 1993, 441-464. Zbl0803.35015MR1134760DOI10.2307/2154464
- ZEL'DOVICH, YA.B. - BARENBLATT, G.I. - LIBROVICH, V.B. - MAKHVILADZE, G.M., The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York1985. MR781350DOI10.1007/978-1-4613-2349-5
- ZEL'DOVICH, YA.B. - FRANK-KAMENETSKII, D.A., The theory of thermal propagation of flames. Zh. Fiz. Khim., 12, 1938, 100-105 (in Russian; English transl. in: Collected Works of Ya.B. Zeldovich, vol. 1, Princeton Univ. Press, 1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.