Stability of finite element mixed interpolations for contact problems
Klaus Jürgen Bathe; Franco Brezzi
- Volume: 12, Issue: 3, page 167-183
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBathe, Klaus Jürgen, and Brezzi, Franco. "Stability of finite element mixed interpolations for contact problems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.3 (2001): 167-183. <http://eudml.org/doc/252365>.
@article{Bathe2001,
abstract = {We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.},
author = {Bathe, Klaus Jürgen, Brezzi, Franco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Contact problems; Elasticity; Inf-sup condition; contact problems; elasticity; inf-sup condition},
language = {eng},
month = {9},
number = {3},
pages = {167-183},
publisher = {Accademia Nazionale dei Lincei},
title = {Stability of finite element mixed interpolations for contact problems},
url = {http://eudml.org/doc/252365},
volume = {12},
year = {2001},
}
TY - JOUR
AU - Bathe, Klaus Jürgen
AU - Brezzi, Franco
TI - Stability of finite element mixed interpolations for contact problems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/9//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 3
SP - 167
EP - 183
AB - We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.
LA - eng
KW - Contact problems; Elasticity; Inf-sup condition; contact problems; elasticity; inf-sup condition
UR - http://eudml.org/doc/252365
ER -
References
top- El-Abbasi, N. - Bathe, K.J., Stability and Patch Test Performance of Contact Discretizations. Submitted to Computers & Structures.
- Baiocchi, C. - Buttazzo, G. - Gastaldi, F. - Tomarelli, F., General Existence Theorems for Unilateral Problems in Continuum Mechanics. Arch. Rational Mech. Anal., 100, 1988, 149-189. Zbl0646.73011MR913962DOI10.1007/BF00282202
- Baiocchi, C. - Capelo, A., Variational and Quasivariational Inequalities. J. Wiley and Sons, Chichester1984. Zbl0551.49007MR745619
- Bathe, K.J., Finite Element Procedures. Prentice Hall, 1996. Zbl0994.74001
- Bathe, K.J., The Inf-Sup Condition and its Evaluation for Mixed Finite Element Methods. Computers & Structures, 79, 2001, 243-252 and 971. MR1813187DOI10.1016/S0045-7949(00)00123-1
- K.J. Bathe (ed.), Computational Fluid and Solid Mechanics. Elsevier, 2001. Zbl0985.74004
- Brezis, H., Problèmes unilateraux. J. Math. Pures Appl., 51, 1972, 1-168. Zbl0237.35001MR428137
- Brezzi, F. - Bathe, K.J., A Discourse on the Stability Conditions for Mixed Finite Element Formulations. Computer Methods in Applied Mechanics and Engineering, 82, 1990, 27-57. Zbl0736.73062MR1077650DOI10.1016/0045-7825(90)90157-H
- Brezzi, F. - Fortin, M., Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991. Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
- Brezzi, F. - Hager, W.W. - Raviart, P.-A., Error Estimates for the Finite Element Solution of Variational Inequalities. Part II Mixed Methods. Numer. Math., 31, 1978, 1-16. Zbl0427.65077MR508584DOI10.1007/BF01396010
- Ciarlet, Ph.G., The Finite Element Method for Elliptic Problems. North Holland, 1978. Zbl0511.65078MR520174
- Duvaut, G. - Lions, J.L., Inequalities in Mechanics and Physics. Springer-Verlag, 1976. Zbl0331.35002MR521262
- Fichera, G., Unilateral Constraints in Elasticity. In: Actes du Congrès International des Mathématiciens (Nice, Paris 1970), 3, Gauthier-Villars, septembre 1971, vol. 3, 79-84. Zbl0254.73021MR426557
- Fortin, M., An Analysis of Convergence of the Mixed Finite Element Method. RAIRO Analyse Numérique, 11, 1997, 341-354. Zbl0373.65055MR464543
- Kikuchi, N. - Oden, J.T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied mathematics, 8, 1988. Zbl0685.73002MR961258
- Kinderlehrer, D. - Stampacchia, G., An Introduction to Variational Inequalities and Their Applications. Academic Press, 1980. Zbl0457.35001MR567696
- Lions, J.L. - Magenes, E., Nonhomogeneous Boundary Value Problems and Applications. Vol. 1, Springer-Verlag, 1972. Zbl0223.35039
- Stenberg, R., A Family of Mixed Finite Elements for the Elasticity Problem. Numer. Math., 53, 1988, 513-538. Zbl0632.73063MR954768DOI10.1007/BF01397550
- Widlund, O., An Extension Theorem for Finite Element Spaces with three Applications. In: W. Hackbush - K. Witsch (eds.), Numerical Techniques in Continuum Mechanics. Vieweg & Sohn, 1987. Zbl0615.65114
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.