Stability of finite element mixed interpolations for contact problems

Klaus Jürgen Bathe; Franco Brezzi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 3, page 167-183
  • ISSN: 1120-6330

Abstract

top
We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.

How to cite

top

Bathe, Klaus Jürgen, and Brezzi, Franco. "Stability of finite element mixed interpolations for contact problems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.3 (2001): 167-183. <http://eudml.org/doc/252365>.

@article{Bathe2001,
abstract = {We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.},
author = {Bathe, Klaus Jürgen, Brezzi, Franco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Contact problems; Elasticity; Inf-sup condition; contact problems; elasticity; inf-sup condition},
language = {eng},
month = {9},
number = {3},
pages = {167-183},
publisher = {Accademia Nazionale dei Lincei},
title = {Stability of finite element mixed interpolations for contact problems},
url = {http://eudml.org/doc/252365},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Bathe, Klaus Jürgen
AU - Brezzi, Franco
TI - Stability of finite element mixed interpolations for contact problems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/9//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 3
SP - 167
EP - 183
AB - We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.
LA - eng
KW - Contact problems; Elasticity; Inf-sup condition; contact problems; elasticity; inf-sup condition
UR - http://eudml.org/doc/252365
ER -

References

top
  1. El-Abbasi, N. - Bathe, K.J., Stability and Patch Test Performance of Contact Discretizations. Submitted to Computers & Structures. 
  2. Baiocchi, C. - Buttazzo, G. - Gastaldi, F. - Tomarelli, F., General Existence Theorems for Unilateral Problems in Continuum Mechanics. Arch. Rational Mech. Anal., 100, 1988, 149-189. Zbl0646.73011MR913962DOI10.1007/BF00282202
  3. Baiocchi, C. - Capelo, A., Variational and Quasivariational Inequalities. J. Wiley and Sons, Chichester1984. Zbl0551.49007MR745619
  4. Bathe, K.J., Finite Element Procedures. Prentice Hall, 1996. Zbl0994.74001
  5. Bathe, K.J., The Inf-Sup Condition and its Evaluation for Mixed Finite Element Methods. Computers & Structures, 79, 2001, 243-252 and 971. MR1813187DOI10.1016/S0045-7949(00)00123-1
  6. K.J. Bathe (ed.), Computational Fluid and Solid Mechanics. Elsevier, 2001. Zbl0985.74004
  7. Brezis, H., Problèmes unilateraux. J. Math. Pures Appl., 51, 1972, 1-168. Zbl0237.35001MR428137
  8. Brezzi, F. - Bathe, K.J., A Discourse on the Stability Conditions for Mixed Finite Element Formulations. Computer Methods in Applied Mechanics and Engineering, 82, 1990, 27-57. Zbl0736.73062MR1077650DOI10.1016/0045-7825(90)90157-H
  9. Brezzi, F. - Fortin, M., Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991. Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  10. Brezzi, F. - Hager, W.W. - Raviart, P.-A., Error Estimates for the Finite Element Solution of Variational Inequalities. Part II Mixed Methods. Numer. Math., 31, 1978, 1-16. Zbl0427.65077MR508584DOI10.1007/BF01396010
  11. Ciarlet, Ph.G., The Finite Element Method for Elliptic Problems. North Holland, 1978. Zbl0511.65078MR520174
  12. Duvaut, G. - Lions, J.L., Inequalities in Mechanics and Physics. Springer-Verlag, 1976. Zbl0331.35002MR521262
  13. Fichera, G., Unilateral Constraints in Elasticity. In: Actes du Congrès International des Mathématiciens (Nice, Paris 1970), 3, Gauthier-Villars, septembre 1971, vol. 3, 79-84. Zbl0254.73021MR426557
  14. Fortin, M., An Analysis of Convergence of the Mixed Finite Element Method. RAIRO Analyse Numérique, 11, 1997, 341-354. Zbl0373.65055MR464543
  15. Kikuchi, N. - Oden, J.T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied mathematics, 8, 1988. Zbl0685.73002MR961258
  16. Kinderlehrer, D. - Stampacchia, G., An Introduction to Variational Inequalities and Their Applications. Academic Press, 1980. Zbl0457.35001MR567696
  17. Lions, J.L. - Magenes, E., Nonhomogeneous Boundary Value Problems and Applications. Vol. 1, Springer-Verlag, 1972. Zbl0223.35039
  18. Stenberg, R., A Family of Mixed Finite Elements for the Elasticity Problem. Numer. Math., 53, 1988, 513-538. Zbl0632.73063MR954768DOI10.1007/BF01397550
  19. Widlund, O., An Extension Theorem for Finite Element Spaces with three Applications. In: W. Hackbush - K. Witsch (eds.), Numerical Techniques in Continuum Mechanics. Vieweg & Sohn, 1987. Zbl0615.65114

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.