On the unique extension problem for functionals of the calculus of variations
Luciano Carbone; Riccardo De Arcangelis
- Volume: 12, Issue: 2, page 85-106
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCarbone, Luciano, and De Arcangelis, Riccardo. "On the unique extension problem for functionals of the calculus of variations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.2 (2001): 85-106. <http://eudml.org/doc/252367>.
@article{Carbone2001,
abstract = {By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of $\mathbb\{R\}^\{n\}$ and every function in $C^\{\infty\} (\mathbb\{R\}^\{n\})$, and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families of open sets and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its uniqueness are proposed. The results are applied to some examples in Calculus of Variations.},
author = {Carbone, Luciano, De Arcangelis, Riccardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Extension of functionals; Uniqueness; Lower semicontinuous envelopes; Inner regular envelopes; extension of functionals; uniqueness; lower semicontinuous envelopes; inner regular envelopes},
language = {eng},
month = {6},
number = {2},
pages = {85-106},
publisher = {Accademia Nazionale dei Lincei},
title = {On the unique extension problem for functionals of the calculus of variations},
url = {http://eudml.org/doc/252367},
volume = {12},
year = {2001},
}
TY - JOUR
AU - Carbone, Luciano
AU - De Arcangelis, Riccardo
TI - On the unique extension problem for functionals of the calculus of variations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/6//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 2
SP - 85
EP - 106
AB - By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of $\mathbb{R}^{n}$ and every function in $C^{\infty} (\mathbb{R}^{n})$, and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families of open sets and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its uniqueness are proposed. The results are applied to some examples in Calculus of Variations.
LA - eng
KW - Extension of functionals; Uniqueness; Lower semicontinuous envelopes; Inner regular envelopes; extension of functionals; uniqueness; lower semicontinuous envelopes; inner regular envelopes
UR - http://eudml.org/doc/252367
ER -
References
top- Bouchitté, G. - Buttazzo, G., New Lower Semicontinuity Results for Nonconvex Functionals Defined on Measures. Nonlinear Anal., vol. 15, 1990, 679-692. Zbl0736.49007MR1073958DOI10.1016/0362-546X(90)90007-4
- Buttazzo, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser., vol. 207, Longman Scientific & Technical, Harlow1989. Zbl0669.49005MR1020296
- Caccioppoli, R., Trasformazioni piane, superficie quadrabili, integrali di superficie. Rend. Circ. Mat. Palermo, s. 1, vol. 54, 1930, 217-262 (Also in Caccioppoli, R., Opere, Vol. I. Edizioni Cremonese, Roma1963, 191-244). JFM56.0225.02
- Caccioppoli, R., Misura e integrazione sugli insiemi dimensionalmente orientati. Notes I, II. Atti Acc. Lincei Rend. fis., s. 8, vol. 12, 1952, 3-11, 137-146 (Also in Caccioppoli, R., Opere, Vol. I. Edizioni Cremonese, Roma1963, 358-380). Zbl0048.03704MR47118
- Carbone, L. - De Arcangelis, R., Integral Representation for Some Classes of Unbounded Functionals. Atti Sem. Mat. Fis. Univ. Modena, vol. 46-Suppl., Special Issue dedicated to Prof. Calogero Vinti, 1998, 533-567. Zbl0912.49016MR1645739
- Carbone, L. - De Arcangelis, R., On the Relaxation of Some Classes of Unbounded Integral Functionals. Matematiche, vol. 51, Special Issue in honour of Francesco Guglielmino, 1996, 221-256. Zbl0908.49012MR1488070
- Carbone, L. - Sbordone, C., Some Properties of -Limits of Integral Functionals. Ann. Mat. Pura Appl., vol. 122, 1979, 1-60. Zbl0474.49016MR565062DOI10.1007/BF02411687
- Cesari, L., Surface Area. Ann. of Math. Stud., vol. 35, Princeton University Press, Princeton1956. Zbl0073.04101MR74500
- Corbo Esposito, A. - De Arcangelis, R., A Characterization of Families of Function Sets Described by Constraints on the Gradient. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 11, 1994, 553-609. Zbl0839.49007MR1302280
- Dal Maso, G., An Introduction to -convergence. Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser-Verlag, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- De Giorgi, E., Definizione ed espressione analitica del perimetro di un insieme. Atti Acc. Lincei Rend. fis., s. 8, vol. 14, 1953, 390-393. Zbl0051.29403MR56066
- De Giorgi, E., Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni. Ann. Mat. Pura Appl., s. 4, vol. 36, 1954, 191-213. Zbl0055.28504MR62214
- De Giorgi, E., Sviluppi dell’Analisi Funzionale nel Novecento. In: Renato Caccioppoli. La Napoli del suo tempo e la matematica del XX secolo. La Città del Sole, Napoli1999, 61-79. Zbl1093.01503
- De Giorgi, E. - Colombini, F. - Piccinini, L.C., Frontiere orientate di misura minima e questioni collegate. Quad. Scuola Norm. Sup. Pisa Cl. Sci., Pisa1972. Zbl0296.49031MR493669
- De Giorgi, E. - Letta, G., Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci., s. 4, vol. 4, 1977, 61-99. Zbl0405.28008MR466479
- Ekeland, I. - Temam, R., Convex Analysis and Variational Problems. Stud. Math. Appl., vol. 1, North-Holland American Elsevier, Amsterdam1976. Zbl0322.90046MR463994
- Federer, H., Geometric Measure Theory. Grundlehren Math. Wiss., vol. 153, Springer-Verlag, Berlin1969. Zbl0176.00801MR257325
- Fréchet, M., Sur le prolongement des fonctionnelles semi-continues et sur l’aire des surfaces courbes. Fund. Math., vol. 7, 1925, 210-224. JFM51.0315.01
- Giaquinta, M. - Modica, G. - Souček, J., Cartesian Currents in the Calculus of Variations I. Ergeb. Math. Grenzgeb., s. 3, vol. 37, Springer-Verlag, Berlin1998. Zbl0914.49001MR1645086
- Giusti, E., Minimal Surfaces and Functions of Bounded Variation. Monogr. Math., vol. 80, Birkhäuser-Verlag, Boston1984. Zbl0545.49018MR775682
- Goffman, C., Lower-Semi-Continuity and Area Functionals. I. The Non-Parametric Case. Rend. Circ. Mat. Palermo, s. 2, vol. 2, 1953, 203-235. Zbl0052.28601MR65628
- Goffman, C. - Serrin, J., Sublinear Functions of Measures and Variational Integrals. Duke Math. J., vol. 31, 1964, 159-178. Zbl0123.09804MR162902
- Jordan, C., Cours d’Analyse. Gauthier-Villars, Paris1909-1915.
- Lebesgue, H., Intégrale, Longueur, Aire. Ann. Mat. (at present Ann. Mat. Pura Appl.), s. 3, vol. 7, 1902, 231-359. JFM33.0307.02
- Marcellini, P. - Sbordone, C., Homogenization of Non-Uniformly Elliptic Operators. Appl. Anal., vol. 8, 1978, 101-113. Zbl0406.35014MR523948DOI10.1080/00036817808839219
- Massari, U. - Miranda, M., Minimal Surfaces of Codimension One. North-Holland Math. Stud., vol. 91, North-Holland, Amsterdam1984. Zbl0565.49030MR795963
- Miranda, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa, s. 3, vol. 18, 1964, 515-542. Zbl0152.24402MR174706
- Miranda, M., Renato Caccioppoli e la teoria geometrica della misura. Ricerche Mat., vol. 40, 1991, 111-119. Zbl0793.01016MR1306301
- Morrey, C.B., Multiple Integrals in the Calculus of Variations. Grundlehren Math. Wiss., vol. 130, Springer-Verlag, Berlin1966. Zbl0142.38701MR202511
- Phillips, R.S., Integration in a Convex Linear Topological Space. Trans. Amer. Mat. Soc., vol. 47, 1940, 114-145. MR2707JFM66.0226.01
- Serrin, J., A New Definition of the Integral for Non-Parametric Problems in the Calculus of Variations. Acta Math., vol. 102, 1959, 23-32. Zbl0089.08601MR108746
- Serrin, J., On the Definition and Properties of Certain Variational Integrals. Trans. Amer. Math. Soc., vol. 101, 1961, 139-167. Zbl0102.04601MR138018
- Treves, F., Topological Vector Spaces, Distributions and Kernels. Pure Appl. Math., vol. 25, Academic Press, New York1967. Zbl0171.10402MR225131
- Ziemer, W.P., Weakly Differentiable Functions. Grad. Texts in Math., vol. 120, Springer-Verlag, Berlin1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
Citations in EuDML Documents
top- Carmen Perugia, Omogenizzazione di problemi di tipo stazionario ed evolutivo in domini perforati e risultati di estensione unica nel Calcolo delle Variazioni
- Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
- Luisa Faella, Su alcuni problemi nell’omogeneizzazione e risultati di estensione unica nel calcolo delle variazioni
- Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.