On the unique extension problem for functionals of the calculus of variations

Luciano Carbone; Riccardo De Arcangelis

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 2, page 85-106
  • ISSN: 1120-6330

Abstract

top
By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of R n and every function in C R n , and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families of open sets and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its uniqueness are proposed. The results are applied to some examples in Calculus of Variations.

How to cite

top

Carbone, Luciano, and De Arcangelis, Riccardo. "On the unique extension problem for functionals of the calculus of variations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.2 (2001): 85-106. <http://eudml.org/doc/252367>.

@article{Carbone2001,
abstract = {By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of $\mathbb\{R\}^\{n\}$ and every function in $C^\{\infty\} (\mathbb\{R\}^\{n\})$, and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families of open sets and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its uniqueness are proposed. The results are applied to some examples in Calculus of Variations.},
author = {Carbone, Luciano, De Arcangelis, Riccardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Extension of functionals; Uniqueness; Lower semicontinuous envelopes; Inner regular envelopes; extension of functionals; uniqueness; lower semicontinuous envelopes; inner regular envelopes},
language = {eng},
month = {6},
number = {2},
pages = {85-106},
publisher = {Accademia Nazionale dei Lincei},
title = {On the unique extension problem for functionals of the calculus of variations},
url = {http://eudml.org/doc/252367},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Carbone, Luciano
AU - De Arcangelis, Riccardo
TI - On the unique extension problem for functionals of the calculus of variations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/6//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 2
SP - 85
EP - 106
AB - By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of $\mathbb{R}^{n}$ and every function in $C^{\infty} (\mathbb{R}^{n})$, and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families of open sets and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its uniqueness are proposed. The results are applied to some examples in Calculus of Variations.
LA - eng
KW - Extension of functionals; Uniqueness; Lower semicontinuous envelopes; Inner regular envelopes; extension of functionals; uniqueness; lower semicontinuous envelopes; inner regular envelopes
UR - http://eudml.org/doc/252367
ER -

References

top
  1. Bouchitté, G. - Buttazzo, G., New Lower Semicontinuity Results for Nonconvex Functionals Defined on Measures. Nonlinear Anal., vol. 15, 1990, 679-692. Zbl0736.49007MR1073958DOI10.1016/0362-546X(90)90007-4
  2. Buttazzo, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser., vol. 207, Longman Scientific & Technical, Harlow1989. Zbl0669.49005MR1020296
  3. Caccioppoli, R., Trasformazioni piane, superficie quadrabili, integrali di superficie. Rend. Circ. Mat. Palermo, s. 1, vol. 54, 1930, 217-262 (Also in Caccioppoli, R., Opere, Vol. I. Edizioni Cremonese, Roma1963, 191-244). JFM56.0225.02
  4. Caccioppoli, R., Misura e integrazione sugli insiemi dimensionalmente orientati. Notes I, II. Atti Acc. Lincei Rend. fis., s. 8, vol. 12, 1952, 3-11, 137-146 (Also in Caccioppoli, R., Opere, Vol. I. Edizioni Cremonese, Roma1963, 358-380). Zbl0048.03704MR47118
  5. Carbone, L. - De Arcangelis, R., Integral Representation for Some Classes of Unbounded Functionals. Atti Sem. Mat. Fis. Univ. Modena, vol. 46-Suppl., Special Issue dedicated to Prof. Calogero Vinti, 1998, 533-567. Zbl0912.49016MR1645739
  6. Carbone, L. - De Arcangelis, R., On the Relaxation of Some Classes of Unbounded Integral Functionals. Matematiche, vol. 51, Special Issue in honour of Francesco Guglielmino, 1996, 221-256. Zbl0908.49012MR1488070
  7. Carbone, L. - Sbordone, C., Some Properties of Γ -Limits of Integral Functionals. Ann. Mat. Pura Appl., vol. 122, 1979, 1-60. Zbl0474.49016MR565062DOI10.1007/BF02411687
  8. Cesari, L., Surface Area. Ann. of Math. Stud., vol. 35, Princeton University Press, Princeton1956. Zbl0073.04101MR74500
  9. Corbo Esposito, A. - De Arcangelis, R., A Characterization of Families of Function Sets Described by Constraints on the Gradient. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 11, 1994, 553-609. Zbl0839.49007MR1302280
  10. Dal Maso, G., An Introduction to Γ -convergence. Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser-Verlag, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  11. De Giorgi, E., Definizione ed espressione analitica del perimetro di un insieme. Atti Acc. Lincei Rend. fis., s. 8, vol. 14, 1953, 390-393. Zbl0051.29403MR56066
  12. De Giorgi, E., Su una teoria generale della misura r 1 -dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl., s. 4, vol. 36, 1954, 191-213. Zbl0055.28504MR62214
  13. De Giorgi, E., Sviluppi dell’Analisi Funzionale nel Novecento. In: Renato Caccioppoli. La Napoli del suo tempo e la matematica del XX secolo. La Città del Sole, Napoli1999, 61-79. Zbl1093.01503
  14. De Giorgi, E. - Colombini, F. - Piccinini, L.C., Frontiere orientate di misura minima e questioni collegate. Quad. Scuola Norm. Sup. Pisa Cl. Sci., Pisa1972. Zbl0296.49031MR493669
  15. De Giorgi, E. - Letta, G., Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci., s. 4, vol. 4, 1977, 61-99. Zbl0405.28008MR466479
  16. Ekeland, I. - Temam, R., Convex Analysis and Variational Problems. Stud. Math. Appl., vol. 1, North-Holland American Elsevier, Amsterdam1976. Zbl0322.90046MR463994
  17. Federer, H., Geometric Measure Theory. Grundlehren Math. Wiss., vol. 153, Springer-Verlag, Berlin1969. Zbl0176.00801MR257325
  18. Fréchet, M., Sur le prolongement des fonctionnelles semi-continues et sur l’aire des surfaces courbes. Fund. Math., vol. 7, 1925, 210-224. JFM51.0315.01
  19. Giaquinta, M. - Modica, G. - Souček, J., Cartesian Currents in the Calculus of Variations I. Ergeb. Math. Grenzgeb., s. 3, vol. 37, Springer-Verlag, Berlin1998. Zbl0914.49001MR1645086
  20. Giusti, E., Minimal Surfaces and Functions of Bounded Variation. Monogr. Math., vol. 80, Birkhäuser-Verlag, Boston1984. Zbl0545.49018MR775682
  21. Goffman, C., Lower-Semi-Continuity and Area Functionals. I. The Non-Parametric Case. Rend. Circ. Mat. Palermo, s. 2, vol. 2, 1953, 203-235. Zbl0052.28601MR65628
  22. Goffman, C. - Serrin, J., Sublinear Functions of Measures and Variational Integrals. Duke Math. J., vol. 31, 1964, 159-178. Zbl0123.09804MR162902
  23. Jordan, C., Cours d’Analyse. Gauthier-Villars, Paris1909-1915. 
  24. Lebesgue, H., Intégrale, Longueur, Aire. Ann. Mat. (at present Ann. Mat. Pura Appl.), s. 3, vol. 7, 1902, 231-359. JFM33.0307.02
  25. Marcellini, P. - Sbordone, C., Homogenization of Non-Uniformly Elliptic Operators. Appl. Anal., vol. 8, 1978, 101-113. Zbl0406.35014MR523948DOI10.1080/00036817808839219
  26. Massari, U. - Miranda, M., Minimal Surfaces of Codimension One. North-Holland Math. Stud., vol. 91, North-Holland, Amsterdam1984. Zbl0565.49030MR795963
  27. Miranda, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa, s. 3, vol. 18, 1964, 515-542. Zbl0152.24402MR174706
  28. Miranda, M., Renato Caccioppoli e la teoria geometrica della misura. Ricerche Mat., vol. 40, 1991, 111-119. Zbl0793.01016MR1306301
  29. Morrey, C.B., Multiple Integrals in the Calculus of Variations. Grundlehren Math. Wiss., vol. 130, Springer-Verlag, Berlin1966. Zbl0142.38701MR202511
  30. Phillips, R.S., Integration in a Convex Linear Topological Space. Trans. Amer. Mat. Soc., vol. 47, 1940, 114-145. MR2707JFM66.0226.01
  31. Serrin, J., A New Definition of the Integral for Non-Parametric Problems in the Calculus of Variations. Acta Math., vol. 102, 1959, 23-32. Zbl0089.08601MR108746
  32. Serrin, J., On the Definition and Properties of Certain Variational Integrals. Trans. Amer. Math. Soc., vol. 101, 1961, 139-167. Zbl0102.04601MR138018
  33. Treves, F., Topological Vector Spaces, Distributions and Kernels. Pure Appl. Math., vol. 25, Academic Press, New York1967. Zbl0171.10402MR225131
  34. Ziemer, W.P., Weakly Differentiable Functions. Grad. Texts in Math., vol. 120, Springer-Verlag, Berlin1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

Citations in EuDML Documents

top
  1. Carmen Perugia, Omogenizzazione di problemi di tipo stazionario ed evolutivo in domini perforati e risultati di estensione unica nel Calcolo delle Variazioni
  2. Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
  3. Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
  4. Luisa Faella, Su alcuni problemi nell’omogeneizzazione e risultati di estensione unica nel calcolo delle variazioni

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.