A characterization of families of function sets described by constraints on the gradient
Antonio Corbo Esposito; Riccardo De Arcangelis
Annales de l'I.H.P. Analyse non linéaire (1994)
- Volume: 11, Issue: 5, page 553-609
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCorbo Esposito, Antonio, and De Arcangelis, Riccardo. "A characterization of families of function sets described by constraints on the gradient." Annales de l'I.H.P. Analyse non linéaire 11.5 (1994): 553-609. <http://eudml.org/doc/78344>.
@article{CorboEsposito1994,
author = {Corbo Esposito, Antonio, De Arcangelis, Riccardo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {constraints; gradient; Sobolev spaces; families of subsets; homogenization; elastic-plastic torsion},
language = {eng},
number = {5},
pages = {553-609},
publisher = {Gauthier-Villars},
title = {A characterization of families of function sets described by constraints on the gradient},
url = {http://eudml.org/doc/78344},
volume = {11},
year = {1994},
}
TY - JOUR
AU - Corbo Esposito, Antonio
AU - De Arcangelis, Riccardo
TI - A characterization of families of function sets described by constraints on the gradient
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 5
SP - 553
EP - 609
LA - eng
KW - constraints; gradient; Sobolev spaces; families of subsets; homogenization; elastic-plastic torsion
UR - http://eudml.org/doc/78344
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity Problems in the Calculus of Variations, Arch. Rational Mech. Anal., 86, 1984, pp. 125-145. Zbl0565.49010MR751305
- [2] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. Zbl0561.49012MR773850
- [3] H. Attouch and C. Picard, Variational Inequalities with Varying Obstacles: The General Form of the Limit Problem, J. Funct. Anal., 50, 1983, pp. 329-386. MR695419
- [4] C. Baiocchi and A. Capelo, Disequazioni variazionali e quasivariazionali. Applicazioni a problemi di frontiera libera. Vol. 1: Problemi variazionali, Quaderni Unione Matematica Italiana, Pitagora Editrice, Bologna, 1978.
- [5] A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- [6] G. Birkhoff, Integration of Functions with Values in a Banach Space, Trans. Amer. Mat. Soc., 38, 1935, pp. 357-378. Zbl0013.00803MR1501815JFM61.0234.01
- [7] G. Bouchitté, Convergence et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Applications à l'homogénéisation en plasticité, Ann. Fac. Sci. Univ. Toulouse, Math., VIII, 1, 1986/87, pp. 7-36. Zbl0663.49002MR899595
- [8] G. Bouchitté and G. Dal Maso, Integral Representation and Relaxation of Convex Local Functionals on BV (Ω), Ann. Sc. Norm. Sup. Pisa, IV, 20, 1993, pp. 483-533. Zbl0802.49008MR1267597
- [9] G. Bouchitté and M. Valadier, Integral Representation of Convex Functionals on a Space of Measures, J. Funct. Anal., 80, 1988, pp. 398-420. Zbl0662.46009MR961907
- [10] H. Brezis, Multiplicateur de Lagrange en torsion élastoplastique, Arch. Rational Mech. Anal., 49, 1973, pp. 32-40. Zbl0265.35021MR346346
- [11] H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41, 1971, pp. 254-265. Zbl0214.11104MR346345
- [12] H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96, 1968, pp. 153-180. Zbl0165.45601MR239302
- [13] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in theCalculus of Variations, Longman, Scientific & Technical, 1989. Zbl0669.49005
- [14] G. Buttazzo and G. Dal Maso, Integral Representation and Relaxation of Local Functionals, Nonlinear Anal., 9, 1985, pp. 515-532. Zbl0527.49008MR794824
- [15] L. Carbone, Sur la convergence des intégrales du type de l'énergie sur des fonctions à gradient borné, J. Math. Pures Appl., 56, 9, 1977, pp. 79-84. Zbl0308.49023MR482459
- [16] L. Carbone, Γ-convergence d'intégrales sur des fonctions avec des contraintes sur le gradient, Comm. Part. Diff. Eq., 2, 1977, pp. 627-651. Zbl0357.49020MR493642
- [17] L. Carbone, Sull' omogeneizzazione di un problema variazionale con vincoli sul gradiente, Atti Accad. Naz. Lincei, Rend. Cl.Sci. Fis. Mat. Natur., 63, 8, 1977, pp. 10-14. Zbl0395.49029
- [18] L. Carbone, Sur un problème d'homogénéisation avec des contraintes sur le gradient, J. Math. Pures Appl., 58, 1979, pp. 275-297. Zbl0387.49028MR544254
- [19] L. Carbone and S. Salerno, On a Problem of Homogenization with Quickly Oscillating Constraints on the Gradient, J. Math. Anal. Appl., 90, 1982, pp. 219-250. Zbl0499.49007MR680876
- [20] L. Carbone and S. Salerno, Further Results on a Problem of Homogenization with Constraints on the Gradient, J. Analyse Math. , 44, 1984/85, pp. 1-20. Zbl0574.35006MR801284
- [21] L. Carbone and S. Salerno, Homogenization with Unbounded Constraints on the Gradient, Nonlinear Anal., 9, 1985, pp. 431-444. Zbl0557.49006MR785715
- [22] L. Carbone and C. Sbordone, Some Properties of Γ-limits of Integral Functionals, Ann. Math. Pura Appl., 122, 1979, pp. 1-60. Zbl0474.49016MR565062
- [23] D. Cioranescu and J. Saint Jean Paulin, Homogenization in Open Sets with Holes, J. Math. Pures Appl., 71, 1979, pp. 590-607. Zbl0427.35073MR548785
- [24] A. Corbo Esposito and R. De Arcangelis, Comparison Results for Some Types of Relaxation of Variational Integral Functionals, Ann. Mat. Pura Appl., 164, 1993, pp. 155-193. Zbl0931.49009MR1243954
- [25] A. Corbo Esposito and R. De Arcangelis, The Lavrentieff Phenomenon and Different Processes of Homogenization, Comm. Part. Diff. Eq., 17, 1992, pp. 1503-1538. Zbl0814.35006MR1187620
- [26] A. Corbo Esposito and R. De Arcangelis, Homogenization of Dirichlet Problems with Nonnegative Bounded Constraints on the Gradient, to appear onJ. Analyse Math. Zbl0822.49012
- [27] G. Dal Maso, Integral Representation on BV (Ω) of Γ-limits of Variational Integrals, Manuscripta Math., 30, 1980, pp. 387-413. Zbl0435.49016MR567216
- [28] G. Dal Maso and L. Modica, A General Theory of Variational Functionals, Topics in Functional Analysis1980/81, Quaderni della Scuola Normale Superiore, Pisa, 1982, pp 149-221. Zbl0493.49005MR671757
- [29] R. De Arcangelis, A General Homogenization Result for Almost Periodic Functionals, J. Math. Anal. Appl., 156, 1991, pp. 358-380. Zbl0743.49019MR1103018
- [30] R. De Arcangelis and A. Vitolo, Some Cases of Homogenization with Unbounded Oscillating Constraints on the Gradient, Asymp. Anal., 5, 1992, pp. 397-428. Zbl0769.49029MR1159380
- [3 1 ] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rend. Mat. Roma, 8, 1975, pp. 277-294. Zbl0316.35036MR375037
- [32] E. Di Giorgi, Convergence Problems for Functionals and Operators, Proceed. Int. Meeting on "Recent Methods in Nonlinear Analysis", Rome8-12 May 1975, Pitagora ed., Bologna, 1979, pp. 131-188. Zbl0405.49001MR533166
- [33] E. De Giorgi, F. Colombini and L.C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Quaderni della Scuola Normale Superiore, Pisa, 1972. Zbl0296.49031MR493669
- [34] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3, 1979, pp. 63-101.
- [35] E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Sc. Norm. Sup. Pisa, (4), 4, 1977, pp. 61-99. Zbl0405.28008MR466479
- [36] F. Demengel and R. Temam, Convex Functions of a Measure and Applications, Indiana Univ. Math. J., 33, 5, 1984, pp. 673-709. Zbl0581.46036MR756154
- [37] N. Dunford and J.T. Schwartz, Linear Operators, Wiley-Interscience Publications, 1957. Zbl0084.10402
- [38] G. Duvaut and J.-L. Lions, Les Inéquations en mécanique et en physique, Dunod, Paris, 1972. Zbl0298.73001MR464857
- [39] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland American Elsevier, 1976. Zbl0322.90046MR463994
- [40] N. Fusco, Γ-convergenza unidimensionale, Boll. Un. Mat. Ital. B , 16–B, 1979, pp. 74-86. Zbl0403.49015MR536528
- [41] E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser-Verlag, Basel, 1984. Zbl0545.49018MR775682
- [42] R. Glowinski and H. Lanchon, Torsion élastoplastique d'une barre cylindrique de section multiconnexe, J. Mech., 12, 1973, pp. 151-171. Zbl0273.73023MR363114
- [43] C. Goffman and J. Serrin, Sublinear Functions of Measures and Variational Integrals, Duke Math. J., 31, 1964, pp. 159-178. Zbl0123.09804MR162902
- [44] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, Pure and Applied Mathematics, 1980. Zbl0457.35001MR567696
- [45] K. Kuratowski, Topology, Academic Press, New York, 1966. Zbl0158.40802MR217751
- [46] H. Lanchon, Torsion élastoplastique d'une barre cylindrique de section simplement ou multiplement connexe, J. Mech., 13, 1974, pp. 267-320. Zbl0285.73020MR363107
- [47] P. Marcellini and C. Sbordone, Homogenization of non Uniformly Elliptic Operators, Applicable Analysis, 8, 1978, pp. 101-113. Zbl0406.35014MR523948
- [48] R.S. Phillips, Integration in a Convex Linear Topological Space, Trans. Amer. Mat. Soc., 47, 1940, pp. 114-145. Zbl0022.31902MR2707
- [49] W. Rudin, Analisi Reale e Complessa, Boringhieri, Torino, 1980.
- [50] C. Sbordone, Su alcune applicazioni di un tipo di convergenza variazionale, Ann. Sc. Norm. Sup. Pisa, 2, 1975, pp. 617-638. Zbl0317.49012MR417753
- [51] J. Serrin, On the Definition and Properties of Certain Variational Integrals, Trans. Amer. Math. Soc., 101, 1961, pp. 139-167. Zbl0102.04601MR138018
- [52] S. Spagnolo, Sulla convergenza delle soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Sup. Pisa, 22, 1968, pp. 577-597. Zbl0174.42101MR240443
- [53] T.W. Ting, Elastic-plastic Torsion, Arch. Rational Mech. Anal, 24, 1969, pp. 228-244. Zbl0179.53903MR264889
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.