On weak Hessian determinants

Luigi D'Onofrio; Flavia Giannetti; Luigi Greco

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 3, page 159-169
  • ISSN: 1120-6330

Abstract

top
We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.

How to cite

top

D'Onofrio, Luigi, Giannetti, Flavia, and Greco, Luigi. "On weak Hessian determinants." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.3 (2005): 159-169. <http://eudml.org/doc/252374>.

@article{DOnofrio2005,
abstract = {We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.},
author = {D'Onofrio, Luigi, Giannetti, Flavia, Greco, Luigi},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hessian determinant; Schwartz distributions; Hessian measure},
language = {eng},
month = {9},
number = {3},
pages = {159-169},
publisher = {Accademia Nazionale dei Lincei},
title = {On weak Hessian determinants},
url = {http://eudml.org/doc/252374},
volume = {16},
year = {2005},
}

TY - JOUR
AU - D'Onofrio, Luigi
AU - Giannetti, Flavia
AU - Greco, Luigi
TI - On weak Hessian determinants
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/9//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 3
SP - 159
EP - 169
AB - We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.
LA - eng
KW - Hessian determinant; Schwartz distributions; Hessian measure
UR - http://eudml.org/doc/252374
ER -

References

top
  1. ADAMS, R.A., Sobolev spaces. Pure and Applied Mathematics, vol. 65, Academic Press, 1975. Zbl0314.46030MR450957
  2. BALL, J.M., Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63, n. 4, 1976-77, 337-403. Zbl0368.73040MR475169
  3. BALL, J.M. - CURIE, J.C. - OLVER, P.J., Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal., 41, 1981, 135-174. Zbl0459.35020MR615159DOI10.1016/0022-1236(81)90085-9
  4. COIFMAN, R. - LIONS, P.-L. - MEYER, Y. - SEMMES, S., Compensated compactness and Hardy spaces. J. Math. Pures Appl., 72, 1993, 247-286. Zbl0864.42009MR1225511
  5. DACOROGNA, B. - MURAT, F., On the optimality of certain Sobolev exponents for the weak continuity of determinants. J. Funct. Anal., 105, n. 1, 1992, 42-62. Zbl0769.46025MR1156669DOI10.1016/0022-1236(92)90071-P
  6. EVANS, L.C. - GARIEPY, R.F., Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL1992. Zbl0804.28001MR1158660
  7. GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Area and the area formula. Rend. Sem. Mat. Fis. Milano, 62, 1992, 53-87. Zbl0828.49022MR1293774DOI10.1007/BF02925436
  8. GRECO, L., A remark on the equality det D f = Det D f . Differential Integral Equations, 6, n. 5, 1993, 1089-1100. Zbl0784.49013MR1230483
  9. GUTIÉRREZ, C.E., The Monge-Ampère Equation. Birkhäuser, Boston2001. Zbl0989.35052
  10. IWANIEC, T., On the concept of the weak Jacobian and Hessian. Report. Univ. Jyväskylä, 83, 2001, 181-205. Zbl1007.35015MR1886622
  11. IWANIEC, T. - MARTIN, G., Geometric Function Theory and Nonlinear Analysis. Oxford University Press, Oxford2001. Zbl1045.30011MR1859913
  12. MALÝ, J., From Jacobians to Hessian: distributional form and relaxation. In: Proceedings of the Trends in the Calculus of Variations (Parma, September 15-18, 2004). Riv. Mat. Univ. Parma Zbl1101.49011
  13. MIRANDA, C., Su alcuni teoremi di inclusione. Annales Polonici Math., 16, 1965, 305-315. Zbl0172.40303MR187077
  14. MÜLLER, S., Det = det, a remark on the distributional determinant. C.R. Acad. Sci. Paris, Sér. I Math., 311, 1990, 13-17. Zbl0717.46033MR1062920
  15. MÜLLER, S., On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 1993, 657-698. Zbl0792.46027MR1253606
  16. NIRENBERG, L., An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa Sci. fis. mat., 20, 1966, 733-737. Zbl0163.29905MR208360
  17. OLVER, P.J., Hyper-Jacobians, determinantal ideals and weak solutions to variational problems. Proc. Roy. Soc. Edinburgh Sect. A, 95, 1983, n. 3-4, 317-340. Zbl0562.49005MR726882DOI10.1017/S0308210500013020
  18. TRUDINGER, N.G., Weak solutions of Hessian equations. Comm. Partial Differential Equations, 22, 1997, n. 7-8, 1251-1261. Zbl0883.35035MR1466315DOI10.1080/03605309708821299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.