Hua-harmonic functions on symmetric type two Siegel domains
Dariusz Buraczewski; Ewa Damek
- Volume: 13, Issue: 3-4, page 199-207
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBuraczewski, Dariusz, and Damek, Ewa. "Hua-harmonic functions on symmetric type two Siegel domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 199-207. <http://eudml.org/doc/252377>.
@article{Buraczewski2002,
abstract = {We study a natural system of second order differential operators on a symmetric Siegel domain $\mathcal\{D\}$ that is invariant under the action of biholomorphic transformations. If $\mathcal\{D\}$ is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.},
author = {Buraczewski, Dariusz, Damek, Ewa},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Symmetric Siegel domain; Pluriharmonic function; Invariant system of differential opera- tors; symmetric Siegel domain; pluriharmonic function; invariant system of differential operators},
language = {eng},
month = {12},
number = {3-4},
pages = {199-207},
publisher = {Accademia Nazionale dei Lincei},
title = {Hua-harmonic functions on symmetric type two Siegel domains},
url = {http://eudml.org/doc/252377},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Buraczewski, Dariusz
AU - Damek, Ewa
TI - Hua-harmonic functions on symmetric type two Siegel domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 199
EP - 207
AB - We study a natural system of second order differential operators on a symmetric Siegel domain $\mathcal{D}$ that is invariant under the action of biholomorphic transformations. If $\mathcal{D}$ is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.
LA - eng
KW - Symmetric Siegel domain; Pluriharmonic function; Invariant system of differential opera- tors; symmetric Siegel domain; pluriharmonic function; invariant system of differential operators
UR - http://eudml.org/doc/252377
ER -
References
top- Berline, N. - Vergne, M., Equations de Hua et noyau de Poisson. Lecture Notes in Mathematics, vol. 880, Springer-Verlag, 1981, 1-51. Zbl0521.32024MR644825
- Bonami, A. - Buraczewski, D. - Damek, E. - Hulanicki, A. - Penney, R. - Trojan, B., Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II. Journal of Functional Analysis, 188, n. 1, 2002, 38-74. Zbl0999.31005MR1878631DOI10.1006/jfan.2001.3823
- Buraczewski, D., Pluriharmonicity of Hua harmonic functions on symmetric irreducible Siegel domains of type II. Preprint.
- Buraczewski, D. - Damek, E. - Hulanicki, A., Bounded plurihramonic functions on symmetric irreducible Siegel domains. Mathematische Zeitschrift, to appear. Zbl1008.32013MR1906712DOI10.1007/s002090100367
- Damek, E. - Hulanicki, A., Pluriharmonic functions on symmetric irreducible Siegel domains. Studia Math., 139, n. 2, 2000, 104-140. Zbl0999.32012MR1762449
- Damek, E. - Hulanicki, A. - Müller, D. - Peloso, M., Pluriharmonic functions on symmetric irreducible Siegel domains. Geom. and Funct. Analysis, 10, 2000, 1090-1117. Zbl0969.31007MR1792830DOI10.1007/PL00001648
- Harish-Chandra, , Discrete series for semisimple Lie groups II. Acta Math., 116, 1960, 1-111. Zbl0199.20102
- Helgason, S., Geometric Analysis on Symmetric Spaces. Amer. Math. Soc., Providence1994. Zbl1157.43003MR1280714
- Hua, L.K., Harmonic Analysis of Functions of Several Complex Variables in Classical Domains. Translations of Math. Monographs, vol. 6, Amer. Math. Soc., Providence1963. Zbl0112.07402MR171936
- Johnson, K., Remarks on the theorem of Korányi and Malliavin on the Siegel upper half-plane of rank two. Proc. Amer. Math. Soc., 67, 1977, 351-356. Zbl0395.22012MR476918
- Johnson, K., Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane. Arkiv for Matematik, 16, 1978, 95-108. Zbl0395.22013MR499140DOI10.1007/BF02385985
- Johnson, K.D. - Korányi, A., The Hua operators on bounded symmetric domains of tube type. Ann. of Math., (2) 111, n. 3, 1980, 589-608. Zbl0468.32007MR577139DOI10.2307/1971111
- Korányi, A. - Malliavin, P., Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two. Acta Math., 134, 1975, 185-209. Zbl0318.60066MR410278
- Lassalle, M., Les équations de Hua d’un domaine borné symétrique du type tube. Invent. Math., 77, 1984, 129-161. Zbl0582.32042MR751135DOI10.1007/BF01389139
- Pjatecki-Shapiro, I.I., Geometry and classification of homogeneous bounded domains in . Uspehi Math. Nauk, 2, 1965, 3-51; Russian Math. Surv., 20, 1966, 1-48. Zbl0142.05002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.