On the order of transitive permutation groups with cyclic point-stabilizer
- Volume: 9, Issue: 4, page 241-243
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLucchini, Andrea. "On the order of transitive permutation groups with cyclic point-stabilizer." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 241-243. <http://eudml.org/doc/252382>.
@article{Lucchini1998,
abstract = {If \( G \) is a transitive permutation group of degree \( n \) with cyclic point-stabilizer, then the order of \( G \) is at most \(n^\{2\} − n \).},
author = {Lucchini, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Permutation groups; Transitivity; Normal-core; transitive permutation groups; cyclic point-stabilizers; order bounds},
language = {eng},
month = {12},
number = {4},
pages = {241-243},
publisher = {Accademia Nazionale dei Lincei},
title = {On the order of transitive permutation groups with cyclic point-stabilizer},
url = {http://eudml.org/doc/252382},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Lucchini, Andrea
TI - On the order of transitive permutation groups with cyclic point-stabilizer
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 241
EP - 243
AB - If \( G \) is a transitive permutation group of degree \( n \) with cyclic point-stabilizer, then the order of \( G \) is at most \(n^{2} − n \).
LA - eng
KW - Permutation groups; Transitivity; Normal-core; transitive permutation groups; cyclic point-stabilizers; order bounds
UR - http://eudml.org/doc/252382
ER -
References
top- Babai, L. - Goodman, A. J. - Pyber, L., Groups without faithful transitive permutation representations of small degree. J. Algebra, vol. 195, 1997, 1-29. Zbl0886.20020MR1468882DOI10.1006/jabr.1997.7042
- Chermak, A. - Delgado, A., A measuring argument for finite group. Proc. Amer. Math. Soc., vol. 107, 1989, 907-914. Zbl0687.20022MR994774DOI10.2307/2047648
- Pyber, L., Asymptotic results for simple groups and some applications. In: L. Finkelstein (ed.), Groups and Computation II DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer. Math. Soc., Providence, vol. 28, 1997, 309-327. Zbl0887.20006MR1444143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.