On the order of transitive permutation groups with cyclic point-stabilizer

Andrea Lucchini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 4, page 241-243
  • ISSN: 1120-6330

Abstract

top
If G is a transitive permutation group of degree n with cyclic point-stabilizer, then the order of G is at most n 2 n .

How to cite

top

Lucchini, Andrea. "On the order of transitive permutation groups with cyclic point-stabilizer." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 241-243. <http://eudml.org/doc/252382>.

@article{Lucchini1998,
abstract = {If \( G \) is a transitive permutation group of degree \( n \) with cyclic point-stabilizer, then the order of \( G \) is at most \(n^\{2\} − n \).},
author = {Lucchini, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Permutation groups; Transitivity; Normal-core; transitive permutation groups; cyclic point-stabilizers; order bounds},
language = {eng},
month = {12},
number = {4},
pages = {241-243},
publisher = {Accademia Nazionale dei Lincei},
title = {On the order of transitive permutation groups with cyclic point-stabilizer},
url = {http://eudml.org/doc/252382},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Lucchini, Andrea
TI - On the order of transitive permutation groups with cyclic point-stabilizer
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 241
EP - 243
AB - If \( G \) is a transitive permutation group of degree \( n \) with cyclic point-stabilizer, then the order of \( G \) is at most \(n^{2} − n \).
LA - eng
KW - Permutation groups; Transitivity; Normal-core; transitive permutation groups; cyclic point-stabilizers; order bounds
UR - http://eudml.org/doc/252382
ER -

References

top
  1. Babai, L. - Goodman, A. J. - Pyber, L., Groups without faithful transitive permutation representations of small degree. J. Algebra, vol. 195, 1997, 1-29. Zbl0886.20020MR1468882DOI10.1006/jabr.1997.7042
  2. Chermak, A. - Delgado, A., A measuring argument for finite group. Proc. Amer. Math. Soc., vol. 107, 1989, 907-914. Zbl0687.20022MR994774DOI10.2307/2047648
  3. Pyber, L., Asymptotic results for simple groups and some applications. In: L. Finkelstein (ed.), Groups and Computation II DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer. Math. Soc., Providence, vol. 28, 1997, 309-327. Zbl0887.20006MR1444143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.