On optimal L p regularity in evolution equations

Alessandra Lunardi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1999)

  • Volume: 10, Issue: 1, page 25-34
  • ISSN: 1120-6330

Abstract

top
Using interpolation techniques we prove an optimal regularity theorem for the convolution u t = 0 t T t - s f s d s , where T t is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when T t is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in L p R n , 1 < p < , in which case it yields new optimal regularity results in fractional Sobolev spaces.

How to cite

top

Lunardi, Alessandra. "On optimal \( L^{p} \) regularity in evolution equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 25-34. <http://eudml.org/doc/252383>.

@article{Lunardi1999,
abstract = {Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int\_\{0\}^\{t\} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^\{p\} (\mathbb\{R\}^\{n\}) \), \( 1 < p < \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.},
author = {Lunardi, Alessandra},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Abstract evolution equations; Optimal regularity; Interpolation; abstract evolution equations; interpolation; optimal regularity; convolution; strongly continuous semigroup; Ornstein-Uhlenbeck semigroup; fractional Sobolev spaces},
language = {eng},
month = {3},
number = {1},
pages = {25-34},
publisher = {Accademia Nazionale dei Lincei},
title = {On optimal \( L^\{p\} \) regularity in evolution equations},
url = {http://eudml.org/doc/252383},
volume = {10},
year = {1999},
}

TY - JOUR
AU - Lunardi, Alessandra
TI - On optimal \( L^{p} \) regularity in evolution equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/3//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 1
SP - 25
EP - 34
AB - Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^{p} (\mathbb{R}^{n}) \), \( 1 < p < \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.
LA - eng
KW - Abstract evolution equations; Optimal regularity; Interpolation; abstract evolution equations; interpolation; optimal regularity; convolution; strongly continuous semigroup; Ornstein-Uhlenbeck semigroup; fractional Sobolev spaces
UR - http://eudml.org/doc/252383
ER -

References

top
  1. Agmon, S., On the eigenfunctions and the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. Zbl0109.32701MR147774
  2. Cerrai, S., Elliptic and parabolic equations in R n with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. Zbl0851.35049MR1373775DOI10.1080/03605309608821185
  3. Cerrai, S., Some results for second order elliptic operators having unbounded coefficients. Diff. Int. Eqns., to appear. Zbl1131.35393MR1666273
  4. Da Prato, G., Some results on elliptic and parabolic equations in Hilbert spaces. Rend. Mat. Acc. Lincei, s.9, v.7, 1996, 181-199. Zbl0881.47018MR1454413
  5. Da Prato, G. - Grisvard, P., Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Maths. Pures Appliquées, 54, 1975, 305-387. Zbl0315.47009MR442749
  6. Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
  7. Di Blasio, G., Linear parabolic evolution equations in L p spaces. Ann. Mat. Pura Appl., 138, 1984, 55-104. Zbl0568.35047MR779538DOI10.1007/BF01762539
  8. Di Blasio, G., Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. Zbl0816.47044MR1218138DOI10.1007/BF02573746
  9. Di Blasio, G., Limiting case for interpolation spaces generated by holomorphic semigroups. Semigroup Forum, to appear. Zbl0941.47035MR1640871DOI10.1007/PL00005986
  10. Dore, G. - Venni, A., On the closedness of the sum of two closed operators. Math. Z., 196, 1987, 189-201. Zbl0615.47002MR910825DOI10.1007/BF01163654
  11. Grisvard, P., Equations différentielles abstraites. Ann. Scient. Ec. Norm. Sup., 2, 1969, 311-395. Zbl0193.43502MR270209
  12. Guidetti, D., On elliptic systems in L 1 . Osaka J. Math., 30, 1993, 397-429. Zbl0797.35037MR1240004
  13. Guidetti, D., On interpolation with boundary conditions. Math. Z., 207, 1991, 439-460. Zbl0713.46048MR1115176DOI10.1007/BF02571401
  14. Hardy, G. H. - Littlewood, J. E. - Pòlya, G., Inequalities. Cambridge Univ. Press, Cambridge1934. Zbl0634.26008
  15. Le Merdy, C., Counterexamples on L p -maximal regularity. Preprint Éq. Math. Besançon1997. 
  16. Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel1995. Zbl1261.35001MR3012216
  17. Lunardi, A., An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, 53, 1996, 321-329. Zbl0859.47030MR1406778DOI10.1007/BF02574147
  18. Lunardi, A., On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. Zbl0890.35030MR1389786DOI10.1090/S0002-9947-97-01802-3
  19. Lunardi, A., Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in R n . Studia Math., 128, 1988, 171-198. Zbl0899.35014MR1490820
  20. Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. Zbl0887.35062MR1475774
  21. Lunardi, A. - Vespri, V., Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proceedings of the Conference on Reaction-Diffusion Systems. Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York1998, 217-239. Zbl0887.47034MR1472521
  22. Lunardi, A. - Vespri, V., Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in L p R n . Rend. Istit. Mat. Univ. Trieste, (Special issue dedicated to the memory of Pierre Grisvard), 28, 1997, 251-279. Zbl0899.35027MR1602271
  23. Triebel, H., Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam1978. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.