On optimal regularity in evolution equations
- Volume: 10, Issue: 1, page 25-34
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLunardi, Alessandra. "On optimal \( L^{p} \) regularity in evolution equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 25-34. <http://eudml.org/doc/252383>.
@article{Lunardi1999,
abstract = {Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int\_\{0\}^\{t\} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^\{p\} (\mathbb\{R\}^\{n\}) \), \( 1 < p < \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.},
author = {Lunardi, Alessandra},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Abstract evolution equations; Optimal regularity; Interpolation; abstract evolution equations; interpolation; optimal regularity; convolution; strongly continuous semigroup; Ornstein-Uhlenbeck semigroup; fractional Sobolev spaces},
language = {eng},
month = {3},
number = {1},
pages = {25-34},
publisher = {Accademia Nazionale dei Lincei},
title = {On optimal \( L^\{p\} \) regularity in evolution equations},
url = {http://eudml.org/doc/252383},
volume = {10},
year = {1999},
}
TY - JOUR
AU - Lunardi, Alessandra
TI - On optimal \( L^{p} \) regularity in evolution equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/3//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 1
SP - 25
EP - 34
AB - Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^{p} (\mathbb{R}^{n}) \), \( 1 < p < \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.
LA - eng
KW - Abstract evolution equations; Optimal regularity; Interpolation; abstract evolution equations; interpolation; optimal regularity; convolution; strongly continuous semigroup; Ornstein-Uhlenbeck semigroup; fractional Sobolev spaces
UR - http://eudml.org/doc/252383
ER -
References
top- Agmon, S., On the eigenfunctions and the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. Zbl0109.32701MR147774
- Cerrai, S., Elliptic and parabolic equations in with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. Zbl0851.35049MR1373775DOI10.1080/03605309608821185
- Cerrai, S., Some results for second order elliptic operators having unbounded coefficients. Diff. Int. Eqns., to appear. Zbl1131.35393MR1666273
- Da Prato, G., Some results on elliptic and parabolic equations in Hilbert spaces. Rend. Mat. Acc. Lincei, s.9, v.7, 1996, 181-199. Zbl0881.47018MR1454413
- Da Prato, G. - Grisvard, P., Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Maths. Pures Appliquées, 54, 1975, 305-387. Zbl0315.47009MR442749
- Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
- Di Blasio, G., Linear parabolic evolution equations in spaces. Ann. Mat. Pura Appl., 138, 1984, 55-104. Zbl0568.35047MR779538DOI10.1007/BF01762539
- Di Blasio, G., Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. Zbl0816.47044MR1218138DOI10.1007/BF02573746
- Di Blasio, G., Limiting case for interpolation spaces generated by holomorphic semigroups. Semigroup Forum, to appear. Zbl0941.47035MR1640871DOI10.1007/PL00005986
- Dore, G. - Venni, A., On the closedness of the sum of two closed operators. Math. Z., 196, 1987, 189-201. Zbl0615.47002MR910825DOI10.1007/BF01163654
- Grisvard, P., Equations différentielles abstraites. Ann. Scient. Ec. Norm. Sup., 2, 1969, 311-395. Zbl0193.43502MR270209
- Guidetti, D., On elliptic systems in . Osaka J. Math., 30, 1993, 397-429. Zbl0797.35037MR1240004
- Guidetti, D., On interpolation with boundary conditions. Math. Z., 207, 1991, 439-460. Zbl0713.46048MR1115176DOI10.1007/BF02571401
- Hardy, G. H. - Littlewood, J. E. - Pòlya, G., Inequalities. Cambridge Univ. Press, Cambridge1934. Zbl0634.26008
- Le Merdy, C., Counterexamples on -maximal regularity. Preprint Éq. Math. Besançon1997.
- Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel1995. Zbl1261.35001MR3012216
- Lunardi, A., An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, 53, 1996, 321-329. Zbl0859.47030MR1406778DOI10.1007/BF02574147
- Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. Zbl0890.35030MR1389786DOI10.1090/S0002-9947-97-01802-3
- Lunardi, A., Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in . Studia Math., 128, 1988, 171-198. Zbl0899.35014MR1490820
- Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. Zbl0887.35062MR1475774
- Lunardi, A. - Vespri, V., Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proceedings of the Conference on Reaction-Diffusion Systems. Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York1998, 217-239. Zbl0887.47034MR1472521
- Lunardi, A. - Vespri, V., Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in . Rend. Istit. Mat. Univ. Trieste, (Special issue dedicated to the memory of Pierre Grisvard), 28, 1997, 251-279. Zbl0899.35027MR1602271
- Triebel, H., Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam1978. Zbl0387.46032MR503903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.