Some results on elliptic and parabolic equations in Hilbert spaces

Giuseppe Da Prato

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 3, page 181-199
  • ISSN: 1120-6330

Abstract

top
We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.

How to cite

top

Da Prato, Giuseppe. "Some results on elliptic and parabolic equations in Hilbert spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.3 (1996): 181-199. <http://eudml.org/doc/244148>.

@article{DaPrato1996,
abstract = {We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.},
author = {Da Prato, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup; Schauder estimates; elliptic and parabolic equations; infinitely many variables; existence; uniqueness; regularity of solutions},
language = {eng},
month = {12},
number = {3},
pages = {181-199},
publisher = {Accademia Nazionale dei Lincei},
title = {Some results on elliptic and parabolic equations in Hilbert spaces},
url = {http://eudml.org/doc/244148},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Da Prato, Giuseppe
TI - Some results on elliptic and parabolic equations in Hilbert spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 3
SP - 181
EP - 199
AB - We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.
LA - eng
KW - Elliptic and parabolic equations in Hilbert spaces; Ornstein-Uhlenbeck semigroup; Schauder estimates; elliptic and parabolic equations; infinitely many variables; existence; uniqueness; regularity of solutions
UR - http://eudml.org/doc/244148
ER -

References

top
  1. CANNARSA, P. - DA PRATO, G., On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42. Zbl0787.35115MR1245596DOI10.1006/jfan.1993.1137
  2. CANNARSA, P. - DA PRATO, G., Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452. Zbl0926.35153MR1401401
  3. CANNARSA, P. - DA PRATO, G., Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, September 1994). To appear. Zbl0890.35159MR1430142
  4. CERRAI, S., A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367 Zbl0817.47048MR1293091DOI10.1007/BF02573496
  5. CERRAI, S. - GOZZI, F., Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486. Zbl0822.47040MR1306569
  6. DA PRATO, G., Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: M. CHIPOT - J. SAINT JEAN PAULIN - I. SHAFRIR (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214. Zbl0908.47034MR1316200
  7. DA PRATO, G. - LUNARDI, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
  8. DA PRATO, G. - ZABCZYK, J., Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992. Zbl0761.60052MR1207136DOI10.1017/CBO9780511666223
  9. DALECKIJ, JU. L., Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038. Zbl0305.35084MR214943
  10. DUNFORD, N. - SCHWARTZ, J. T., Linear Operators. Vol. II, 1956. Zbl0084.10402
  11. GROSS, L., Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189. Zbl0165.16403
  12. KUO, H. H., Gaussian Measures in Banach Spaces. Springer-Verlag, 1975. Zbl0306.28010MR461643
  13. LASRY, J. M. - LIONS, P. L., A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266. Zbl0631.49018MR876394DOI10.1007/BF02765025
  14. LIONS, J. L. - PEETRE, J., Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68. Zbl0148.11403MR165343
  15. LUNARDI, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel1995. Zbl0816.35001MR1329547DOI10.1007/978-3-0348-9234-6
  16. LUNARDI, A., An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear. Zbl0859.47030MR1406778DOI10.1007/BF02574147
  17. NEMIROVKI, A. S. - SEMENOV, S. M., The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281. Zbl0286.41025MR632033
  18. PIECH, A., Regularity of the Greens operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360. Zbl0228.47034
  19. PIECH, A., A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114. Zbl0169.47103
  20. TRIEBEL, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam1986. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.