Cohomology rings of Artin groups

Claudia Landi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: 1, page 41-65
  • ISSN: 1120-6330

Abstract

top
In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.

How to cite

top

Landi, Claudia. "Cohomology rings of Artin groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 41-65. <http://eudml.org/doc/252384>.

@article{Landi2000,
abstract = {In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.},
author = {Landi, Claudia},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Artin group; Cup product; Regular complex; Identification; Dual block decomposition},
language = {eng},
month = {3},
number = {1},
pages = {41-65},
publisher = {Accademia Nazionale dei Lincei},
title = {Cohomology rings of Artin groups},
url = {http://eudml.org/doc/252384},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Landi, Claudia
TI - Cohomology rings of Artin groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 41
EP - 65
AB - In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.
LA - eng
KW - Artin group; Cup product; Regular complex; Identification; Dual block decomposition
UR - http://eudml.org/doc/252384
ER -

References

top
  1. Arnol'd, V. I., On some topological invariants of algebraic functions. Trudy Mosk. Mat. Obshch., 21, 1970, 27-46. Zbl0208.24003MR274462
  2. Bourbaki, N., Groupes et algèbres de Lie. Chap. 4-6. Masson-Paris1981. Zbl0483.22001MR647314
  3. Brieskorn, E., Sur les groupes de tresses. Sém. Bourb. (1971/72) Lect. Notes in Math., 317, 1973, 21-44. Zbl0277.55003MR422674
  4. Čech, E., Multiplication on a complex. Annals of Mathematics, 37, 1936, 681-697. Zbl0015.13101MR1503304JFM62.0674.01
  5. Cooke, G. E. - Finney, R. L., Homology of cell complexes. Mathematical Notes, Princeton University Press1967. Zbl0173.25701MR219059
  6. De Concini, C. - Salvetti, M., Cohomology of Artin groups. Math. Res. Letters, 3, 1996, 293-297. Zbl0870.57004MR1386847
  7. De Concini, C. - Procesi, C. - Salvetti, M., Arithmetic properties of the cohomology of braid groups. Topology, to appear. Zbl0999.20046MR1851561DOI10.1016/S0040-9383(99)00081-6
  8. De Concini, C. - Procesi, C. - Salvetti, M. - Stumbo, F., Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., to appear. Zbl0973.20025
  9. Deligne, P., Les immeubles des groupes de tresses généralisés. Inv. Math., 17, 1972, 273-302. Zbl0238.20034MR422673
  10. Fuks, D. B., Cohomologies of the group COS mod 2. Funkts Anal. Priloz., 4, 1970, 62-63. Zbl0222.57031
  11. Goryunov, V. V., Cohomology of groups of braids of series C and D and certain stratifications. Funkts Anal. Priloz., 12, 1978, 138-140. Zbl0409.20032MR498905
  12. Hilton, P. J. - Wylie, S., Homology theory. Cambridge University Press1960. Zbl0091.36306MR115161
  13. Humphreys, J. E., Reflection groups and Coxeter groups. Cambridge University Press1990. Zbl0768.20016MR1066460
  14. Lefschetz, S., Topology. Colloquium Publications, Volume XII. American Mathematical Society, New-York1930. JFM56.0491.08
  15. Maunder, C. R., Algebraic topology. London: Van Nostrand Reinhold Company1970. Zbl0205.27302
  16. Salvetti, M., The homotopy type of Artin groups. Math. Res. Letters, 1, 1994, 565-577. Zbl0847.55011MR1295551
  17. Seifert, H. - Threlfall, W., A textbook of topology. Academic Press1980. MR575168
  18. Stumbo, F., Minimal length coset representatives for parabolic subgroups in Coxeter groups. preprint. Zbl1061.20037
  19. Vainshtein, F. V., Cohomologies of braid groups. Funkts Anal. Priloz., 12, 1978, 72-73. MR498903
  20. Vassiliev, V. A., Complements of discriminants of smooth maps. Trans. of Math. Monog.AMS, 98, 1992. Zbl0762.55001MR1168473
  21. Whitney, H., On products on a complex. Annals of Mathematics, 39, 1938, 397-432. Zbl0019.14204MR1503416JFM64.1265.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.