K ( π , 1 ) conjecture for Artin groups

Luis Paris

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 2, page 361-415
  • ISSN: 0240-2963

Abstract

top
The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.

How to cite

top

Paris, Luis. "$K(\pi ,1)$ conjecture for Artin groups." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 361-415. <http://eudml.org/doc/275390>.

@article{Paris2014,
abstract = {The purpose of this paper is to put together a large amount of results on the $K(\pi ,1)$ conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.},
author = {Paris, Luis},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Artin groups; conjecture; Salvetti complexes; arrangements of hyperplanes; Coxeter groups; reflection groups; Artin monoids; homotopy types; cellular decompositions; fundamental groups},
language = {eng},
month = {3},
number = {2},
pages = {361-415},
publisher = {Université Paul Sabatier, Toulouse},
title = {$K(\pi ,1)$ conjecture for Artin groups},
url = {http://eudml.org/doc/275390},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Paris, Luis
TI - $K(\pi ,1)$ conjecture for Artin groups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 361
EP - 415
AB - The purpose of this paper is to put together a large amount of results on the $K(\pi ,1)$ conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.
LA - eng
KW - Artin groups; conjecture; Salvetti complexes; arrangements of hyperplanes; Coxeter groups; reflection groups; Artin monoids; homotopy types; cellular decompositions; fundamental groups
UR - http://eudml.org/doc/275390
ER -

References

top
  1. Abramenko (P.), Brown (K. S.).— Buildings. Theory and applications. Graduate Texts in Mathematics, 248. Springer, New York (2008). Zbl1214.20033MR2439729
  2. Arnol’d (V. I.).— Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, p. 27-46 (1970). Zbl0208.24003MR274462
  3. Bourbaki (N.).— Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968). Zbl0186.33001MR240238
  4. Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d]. Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin (1973). Zbl0277.55003MR422674
  5. Brieskorn (E.), Saito (K.).— Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, p. 245-271 (1972). Zbl0243.20037MR323910
  6. Brown (K. S.).— Cohomology of groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin (1982). Zbl0584.20036MR672956
  7. Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber. J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005). Zbl1109.20027MR2123992
  8. Callegaro (F.).— The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, p. 1903-1923 (2006). Zbl1166.20044MR2263054
  9. Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications. Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008). Zbl1191.20056MR2395168
  10. Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of Artin groups of type A ˜ n , B n and applications. Groups, homotopy and configuration spaces, 85-104, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry (2008). Zbl1143.20031MR2508202
  11. Callegaro (F.), Moroni (D.), Salvetti (M.).— The K ( π , 1 ) problem for the affine Artin group of type B ˜ n and its cohomology. J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010). Zbl1190.20042MR2578601
  12. Callegaro (F.), Salvetti (M.).— Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group. C. R. Math. Acad. Sci. Paris 339, no. 8, p. 573-578 (2004). Zbl1059.32008MR2111354
  13. Charney (R.), Davis (M. W.).— The K ( π , 1 ) -problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995). Zbl0833.51006MR1303028
  14. Charney (R.), Davis (M. W.).— Finite K ( π , 1 ) ’s for Artin groups. Prospects in topology (Princeton, NJ, 1994), p. 110-124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ (1995). Zbl0930.55006MR1368655
  15. Charney (R.), Meier (J.), Whittlesey (K.).— Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedicata 105, p. 171-188 (2004). Zbl1064.20044MR2057250
  16. Charney (R.), Peifer (D.).— The K ( π , 1 ) -conjecture for the affine braid groups. Comment. Math. Helv. 78, no. 3, 584-600 (2003). Zbl1066.20043MR1998395
  17. Cohen (F. R.).— The homology of C n + 1 -spaces, n 0 . Lecture Notes in Math. 533, p. 207-353, Springer-Verlag, Berlin-New York (1976). 
  18. Coxeter (H. S. M.).— Discrete groups generated by reflections. Ann. of Math. (2) 35, no. 3, p. 588-621 (1934). Zbl0010.01101MR1503182
  19. Coxeter (H. S. M.).— The complete enumeration of finite groups of the form R i 2 = ( R i R j ) k i , j = 1 . J. London Math. Soc. 10, p. 21-25 (1935). Zbl0010.34202
  20. De Concini (C.), Procesi (C.), Salvetti (M.).— Arithmetic properties of the cohomology of braid groups. Topology 40, no. 4, p. 739-751 (2001). Zbl0999.20046MR1851561
  21. De Concini (C.), Procesi (C.), Salvetti (M.), Stumbo (F.).— Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, no. 4, p. 695-717 (1999). Zbl0973.20025MR1760537
  22. De Concini (C.), Salvetti (M.).— Stability for the cohomology of Artin groups. Adv. Math. 145, no. 2, p. 291-305 (1999). Zbl0982.20036MR1704578
  23. De Concini (C.), Salvetti (M.).— Cohomology of Coxeter groups and Artin groups. Math. Res. Lett. 7, no. 2-3, p. 213-232 (2000). Zbl0972.20030MR1764318
  24. De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank- 1 local systems over Z . Special issue on braid groups and related topics (Jerusalem, 1995). Topology Appl. 78, no. 1-2, p. 5-20 (1997). Zbl0878.55003MR1465022
  25. Dehornoy (P.), Lafont (Y.).— Homology of Gaussian groups. Ann. Inst. Fourier (Grenoble) 53, no. 2, p. 489-540 (2003). Zbl1100.20036MR1990005
  26. Deligne (P.).— Les immeubles des groupes de tresses généralisés. Invent. Math. 17, p. 273-302 (1972). Zbl0238.20034MR422673
  27. Dobrinskaya (N. È.).— The Arnol’d-Thom-Pham conjecture and the classifying space of a positive Artin monoid. (Russian) Uspekhi Mat. Nauk 57 (2002), no. 6(348), 181-182. Translation in Russian Math. Surveys 57, no. 6, p. 1215-1217 (2002). Zbl1050.55008MR1991872
  28. Ellis (G.), Sköldberg (E.).— The K ( π , 1 ) conjecture for a class of Artin groups. Comment. Math. Helv. 85, no. 2, p. 409-415 (2010). Zbl1192.55011MR2595184
  29. Fox (R.), Neuwirth (L.).— The braid groups. Math. Scand. 10, 119-126 (1962). Zbl0117.41101MR150755
  30. Fuks (D. B.).— Cohomology of the braid group mod 2. Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62-73. Translation in Functional Anal. Appl. 4, p. 143-151 (1970). Zbl0222.57031MR274463
  31. Godelle (E.), Paris (L.).— K ( π , 1 ) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups. Math. Z. 272, no. 3, p. 1339-1364 (2012). Zbl1300.20045MR2995171
  32. Hatcher (A.).— Algebraic topology. Cambridge University Press, Cambridge (2002). Zbl1044.55001MR1867354
  33. Hendriks (H.).— Hyperplane complements of large type. Invent. Math. 79, no. 2, p. 375-381 (1985). Zbl0564.57016MR778133
  34. Landi (C.).— Cohomology rings of Artin groups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11, no. 1, p. 41-65 (2000). Zbl0966.55012MR1797053
  35. van der Lek (H.).— The homotopy type of complex hyperplane complements. Ph. D. Thesis, Nijmegen (1983). 
  36. McCammond (J.), Sulway (R.).— Artin groups of Euclidean type. Preprint, arXiv:1312.7770 
  37. Michel (J.).— A note on words in braid monoids. J. Algebra 215, no. 1, p. 366-377 (1999). Zbl0937.20017MR1684142
  38. Okonek (C.).— Das K ( π , 1 ) -Problem für die affinen Wurzelsysteme vom Typ A n , C n . Math. Z. 168, no. 2, p. 143-148 (1979). Zbl0427.14001MR544701
  39. Orlik (P.), Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
  40. Ozornova (V.).— Factorability, Discrete Morse Theory and a Reformulation of K ( π , 1 ) -conjecture. Ph. D. Thesis, Bonn (2013). 
  41. Paris (L.).— Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes. Trans. Amer. Math. Soc. 340, no. 1, p. 149-178 (1993). Zbl0805.57018MR1148044
  42. Paris (L.).— Artin monoids inject in their groups. Comment. Math. Helv. 77, no. 3, p. 609-637 (2002). Zbl1020.20026MR1933791
  43. Salvetti (M.).— Topology of the complement of real hyperplanes in N . Invent. Math. 88, no. 3, p. 603-618 (1987). Zbl0594.57009MR884802
  44. Salvetti (M.).— On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Math. 113, no. 1-3, p. 155-177 (1993). Zbl0774.52007MR1212876
  45. Salvetti (M.).— The homotopy type of Artin groups. Math. Res. Lett. 1, no. 5, p. 565-577 (1994). Zbl0847.55011MR1295551
  46. Salvetti (M.), Stumbo (F.).— Artin groups associated to infinite Coxeter groups. Discrete Math. 163, no. 1-3, p. 129-138 (1997). Zbl0871.05031MR1428564
  47. Segal (G.).— Configuration-spaces and iterated loop-spaces. Invent. Math. 21, p. 213-221 (1973). Zbl0267.55020MR331377
  48. Settepanella (S.).— A stability-like theorem for cohomology of pure braid groups of the series A, B and D. Topology Appl. 139, no. 1-3, p. 37-47 (2004). Zbl1064.20052MR2051096
  49. Settepanella (S.).— Cohomology of pure braid groups of exceptional cases. Topology Appl. 156, no. 5, p. 1008-1012 (2009). Zbl1195.20055MR2498934
  50. Spanier (E. H.).— Algebraic topology. Corrected reprint. Springer-Verlag, New York-Berlin (1981). Zbl0810.55001MR666554
  51. Tits (J.).— Le problème des mots dans les groupes de Coxeter. Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, p. 175-185, Academic Press, London (1969). Zbl0206.03002MR254129
  52. Tits (J.).— Groupes et géométries de Coxeter. In Wolf Prize in Mathematics, Vol. 2, S. S. Chern and F. Hirzebruch, eds., World Scientific Publishing, River Edge, NJ, p. 740-754 (2001). 
  53. Vaǐnšteǐn (F. V.).— The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, p. 72-73. Translation in Functional Anal. Appl. 12, no. 2, p. 135-137 (1978). MR498903
  54. Vinberg (E. B.).— Discrete linear groups that are generated by reflections. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35, p. 1072-1112 (1971). Zbl0247.20054MR302779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.