conjecture for Artin groups
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 2, page 361-415
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topParis, Luis. "$K(\pi ,1)$ conjecture for Artin groups." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 361-415. <http://eudml.org/doc/275390>.
@article{Paris2014,
abstract = {The purpose of this paper is to put together a large amount of results on the $K(\pi ,1)$ conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.},
author = {Paris, Luis},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Artin groups; conjecture; Salvetti complexes; arrangements of hyperplanes; Coxeter groups; reflection groups; Artin monoids; homotopy types; cellular decompositions; fundamental groups},
language = {eng},
month = {3},
number = {2},
pages = {361-415},
publisher = {Université Paul Sabatier, Toulouse},
title = {$K(\pi ,1)$ conjecture for Artin groups},
url = {http://eudml.org/doc/275390},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Paris, Luis
TI - $K(\pi ,1)$ conjecture for Artin groups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 361
EP - 415
AB - The purpose of this paper is to put together a large amount of results on the $K(\pi ,1)$ conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as self-contained as possible.
LA - eng
KW - Artin groups; conjecture; Salvetti complexes; arrangements of hyperplanes; Coxeter groups; reflection groups; Artin monoids; homotopy types; cellular decompositions; fundamental groups
UR - http://eudml.org/doc/275390
ER -
References
top- Abramenko (P.), Brown (K. S.).— Buildings. Theory and applications. Graduate Texts in Mathematics, 248. Springer, New York (2008). Zbl1214.20033MR2439729
- Arnol’d (V. I.).— Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, p. 27-46 (1970). Zbl0208.24003MR274462
- Bourbaki (N.).— Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968). Zbl0186.33001MR240238
- Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d]. Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin (1973). Zbl0277.55003MR422674
- Brieskorn (E.), Saito (K.).— Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, p. 245-271 (1972). Zbl0243.20037MR323910
- Brown (K. S.).— Cohomology of groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin (1982). Zbl0584.20036MR672956
- Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber. J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005). Zbl1109.20027MR2123992
- Callegaro (F.).— The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, p. 1903-1923 (2006). Zbl1166.20044MR2263054
- Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications. Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008). Zbl1191.20056MR2395168
- Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of Artin groups of type and applications. Groups, homotopy and configuration spaces, 85-104, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry (2008). Zbl1143.20031MR2508202
- Callegaro (F.), Moroni (D.), Salvetti (M.).— The problem for the affine Artin group of type and its cohomology. J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010). Zbl1190.20042MR2578601
- Callegaro (F.), Salvetti (M.).— Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group. C. R. Math. Acad. Sci. Paris 339, no. 8, p. 573-578 (2004). Zbl1059.32008MR2111354
- Charney (R.), Davis (M. W.).— The -problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995). Zbl0833.51006MR1303028
- Charney (R.), Davis (M. W.).— Finite ’s for Artin groups. Prospects in topology (Princeton, NJ, 1994), p. 110-124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ (1995). Zbl0930.55006MR1368655
- Charney (R.), Meier (J.), Whittlesey (K.).— Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedicata 105, p. 171-188 (2004). Zbl1064.20044MR2057250
- Charney (R.), Peifer (D.).— The -conjecture for the affine braid groups. Comment. Math. Helv. 78, no. 3, 584-600 (2003). Zbl1066.20043MR1998395
- Cohen (F. R.).— The homology of -spaces, . Lecture Notes in Math. 533, p. 207-353, Springer-Verlag, Berlin-New York (1976).
- Coxeter (H. S. M.).— Discrete groups generated by reflections. Ann. of Math. (2) 35, no. 3, p. 588-621 (1934). Zbl0010.01101MR1503182
- Coxeter (H. S. M.).— The complete enumeration of finite groups of the form . J. London Math. Soc. 10, p. 21-25 (1935). Zbl0010.34202
- De Concini (C.), Procesi (C.), Salvetti (M.).— Arithmetic properties of the cohomology of braid groups. Topology 40, no. 4, p. 739-751 (2001). Zbl0999.20046MR1851561
- De Concini (C.), Procesi (C.), Salvetti (M.), Stumbo (F.).— Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, no. 4, p. 695-717 (1999). Zbl0973.20025MR1760537
- De Concini (C.), Salvetti (M.).— Stability for the cohomology of Artin groups. Adv. Math. 145, no. 2, p. 291-305 (1999). Zbl0982.20036MR1704578
- De Concini (C.), Salvetti (M.).— Cohomology of Coxeter groups and Artin groups. Math. Res. Lett. 7, no. 2-3, p. 213-232 (2000). Zbl0972.20030MR1764318
- De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank- local systems over . Special issue on braid groups and related topics (Jerusalem, 1995). Topology Appl. 78, no. 1-2, p. 5-20 (1997). Zbl0878.55003MR1465022
- Dehornoy (P.), Lafont (Y.).— Homology of Gaussian groups. Ann. Inst. Fourier (Grenoble) 53, no. 2, p. 489-540 (2003). Zbl1100.20036MR1990005
- Deligne (P.).— Les immeubles des groupes de tresses généralisés. Invent. Math. 17, p. 273-302 (1972). Zbl0238.20034MR422673
- Dobrinskaya (N. È.).— The Arnol’d-Thom-Pham conjecture and the classifying space of a positive Artin monoid. (Russian) Uspekhi Mat. Nauk 57 (2002), no. 6(348), 181-182. Translation in Russian Math. Surveys 57, no. 6, p. 1215-1217 (2002). Zbl1050.55008MR1991872
- Ellis (G.), Sköldberg (E.).— The conjecture for a class of Artin groups. Comment. Math. Helv. 85, no. 2, p. 409-415 (2010). Zbl1192.55011MR2595184
- Fox (R.), Neuwirth (L.).— The braid groups. Math. Scand. 10, 119-126 (1962). Zbl0117.41101MR150755
- Fuks (D. B.).— Cohomology of the braid group mod 2. Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62-73. Translation in Functional Anal. Appl. 4, p. 143-151 (1970). Zbl0222.57031MR274463
- Godelle (E.), Paris (L.).— and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups. Math. Z. 272, no. 3, p. 1339-1364 (2012). Zbl1300.20045MR2995171
- Hatcher (A.).— Algebraic topology. Cambridge University Press, Cambridge (2002). Zbl1044.55001MR1867354
- Hendriks (H.).— Hyperplane complements of large type. Invent. Math. 79, no. 2, p. 375-381 (1985). Zbl0564.57016MR778133
- Landi (C.).— Cohomology rings of Artin groups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11, no. 1, p. 41-65 (2000). Zbl0966.55012MR1797053
- van der Lek (H.).— The homotopy type of complex hyperplane complements. Ph. D. Thesis, Nijmegen (1983).
- McCammond (J.), Sulway (R.).— Artin groups of Euclidean type. Preprint, arXiv:1312.7770
- Michel (J.).— A note on words in braid monoids. J. Algebra 215, no. 1, p. 366-377 (1999). Zbl0937.20017MR1684142
- Okonek (C.).— Das -Problem für die affinen Wurzelsysteme vom Typ , . Math. Z. 168, no. 2, p. 143-148 (1979). Zbl0427.14001MR544701
- Orlik (P.), Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
- Ozornova (V.).— Factorability, Discrete Morse Theory and a Reformulation of -conjecture. Ph. D. Thesis, Bonn (2013).
- Paris (L.).— Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes. Trans. Amer. Math. Soc. 340, no. 1, p. 149-178 (1993). Zbl0805.57018MR1148044
- Paris (L.).— Artin monoids inject in their groups. Comment. Math. Helv. 77, no. 3, p. 609-637 (2002). Zbl1020.20026MR1933791
- Salvetti (M.).— Topology of the complement of real hyperplanes in . Invent. Math. 88, no. 3, p. 603-618 (1987). Zbl0594.57009MR884802
- Salvetti (M.).— On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Math. 113, no. 1-3, p. 155-177 (1993). Zbl0774.52007MR1212876
- Salvetti (M.).— The homotopy type of Artin groups. Math. Res. Lett. 1, no. 5, p. 565-577 (1994). Zbl0847.55011MR1295551
- Salvetti (M.), Stumbo (F.).— Artin groups associated to infinite Coxeter groups. Discrete Math. 163, no. 1-3, p. 129-138 (1997). Zbl0871.05031MR1428564
- Segal (G.).— Configuration-spaces and iterated loop-spaces. Invent. Math. 21, p. 213-221 (1973). Zbl0267.55020MR331377
- Settepanella (S.).— A stability-like theorem for cohomology of pure braid groups of the series A, B and D. Topology Appl. 139, no. 1-3, p. 37-47 (2004). Zbl1064.20052MR2051096
- Settepanella (S.).— Cohomology of pure braid groups of exceptional cases. Topology Appl. 156, no. 5, p. 1008-1012 (2009). Zbl1195.20055MR2498934
- Spanier (E. H.).— Algebraic topology. Corrected reprint. Springer-Verlag, New York-Berlin (1981). Zbl0810.55001MR666554
- Tits (J.).— Le problème des mots dans les groupes de Coxeter. Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, p. 175-185, Academic Press, London (1969). Zbl0206.03002MR254129
- Tits (J.).— Groupes et géométries de Coxeter. In Wolf Prize in Mathematics, Vol. 2, S. S. Chern and F. Hirzebruch, eds., World Scientific Publishing, River Edge, NJ, p. 740-754 (2001).
- Vaǐnšteǐn (F. V.).— The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, p. 72-73. Translation in Functional Anal. Appl. 12, no. 2, p. 135-137 (1978). MR498903
- Vinberg (E. B.).— Discrete linear groups that are generated by reflections. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35, p. 1072-1112 (1971). Zbl0247.20054MR302779
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.