Inner k -th Carathéodory-Reiffen completeness of Reinhardt domains

Paweł Zapałowski

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 2, page 87-92
  • ISSN: 1120-6330

Abstract

top
A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner k -th Carathéodory-Reiffen distance, is given.

How to cite

top

Zapałowski, Paweł. "Inner $k$-th Carathéodory-Reiffen completeness of Reinhardt domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 87-92. <http://eudml.org/doc/252387>.

@article{Zapałowski2004,
abstract = {A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner $k$-th Carathéodory-Reiffen distance, is given.},
author = {Zapałowski, Paweł},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Completeness; Inner $k$ k -th Carathéodory-Reiffen distance; Pseudoconvex Reinhardt domain; completeness; inner -th Carathéodory-Reiffen distance; pseudoconvex Reinhardt domain},
language = {eng},
month = {6},
number = {2},
pages = {87-92},
publisher = {Accademia Nazionale dei Lincei},
title = {Inner $k$-th Carathéodory-Reiffen completeness of Reinhardt domains},
url = {http://eudml.org/doc/252387},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Zapałowski, Paweł
TI - Inner $k$-th Carathéodory-Reiffen completeness of Reinhardt domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 87
EP - 92
AB - A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner $k$-th Carathéodory-Reiffen distance, is given.
LA - eng
KW - Completeness; Inner $k$ k -th Carathéodory-Reiffen distance; Pseudoconvex Reinhardt domain; completeness; inner -th Carathéodory-Reiffen distance; pseudoconvex Reinhardt domain
UR - http://eudml.org/doc/252387
ER -

References

top
  1. FU, S., On completeness of invariant metrics of Reinhardt domains. Arch. Math., 63, 1994, 166-172. Zbl0815.32001MR1289299DOI10.1007/BF01189891
  2. JARNICKI, M. - PFLUG, P., Invariant Distances and Metrics in Complex Analysis. de Gruyter Expositions Math.9, Berlin1993. Zbl0789.32001MR1242120DOI10.1515/9783110870312
  3. PFLUG, P., About the Carathéodory completeness of all Reinhardt domains. In: G. ZAPATA (ed.), Functional Analysis, Holomorphy and Approximation Theory II. North-Holland, Amsterdam1984, 331-337. Zbl0536.32001MR771335DOI10.1016/S0304-0208(08)70835-1
  4. ZWONEK, W., On Carathéodory completeness of pseudoconvex Reinhardt domains. Proc. Amer. Math. Soc., 128(3), 2000, 857-864. Zbl0939.32025MR1646214DOI10.1090/S0002-9939-99-05226-0
  5. ZWONEK, W., Inner Carathéodory completeness of Reinhardt domains. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 153-157. Zbl1072.32017MR1898456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.