Boundary trace of solutions of semilinear elliptic equalities and inequalities
- Volume: 15, Issue: 3-4, page 301-314
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVéron, Laurent. "Boundary trace of solutions of semilinear elliptic equalities and inequalities." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 301-314. <http://eudml.org/doc/252390>.
@article{Véron2004,
abstract = {The boundary trace problem for positive solutions of $$-\triangle u + g(x ,u) \ge 0$$ is considered for nonlinearities of absorption type, and three different methods for defining the trace are compared. The boundary trace is obtained as a generalized Borel measure. The associated Dirichlet problem with boundary data in the set of such Borel measures is studied.},
author = {Véron, Laurent},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Laplacian; Poisson potential; Singularities; Radon measures; Borel measures; Convergence in measure; Balayage; singularities; balayage; convergence in measures},
language = {eng},
month = {12},
number = {3-4},
pages = {301-314},
publisher = {Accademia Nazionale dei Lincei},
title = {Boundary trace of solutions of semilinear elliptic equalities and inequalities},
url = {http://eudml.org/doc/252390},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Véron, Laurent
TI - Boundary trace of solutions of semilinear elliptic equalities and inequalities
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 301
EP - 314
AB - The boundary trace problem for positive solutions of $$-\triangle u + g(x ,u) \ge 0$$ is considered for nonlinearities of absorption type, and three different methods for defining the trace are compared. The boundary trace is obtained as a generalized Borel measure. The associated Dirichlet problem with boundary data in the set of such Borel measures is studied.
LA - eng
KW - Laplacian; Poisson potential; Singularities; Radon measures; Borel measures; Convergence in measure; Balayage; singularities; balayage; convergence in measures
UR - http://eudml.org/doc/252390
ER -
References
top- BANDLE, C. - MARCUS, M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math., 58, 1992, 9-24. Zbl0802.35038MR1226934DOI10.1007/BF02790355
- DU, Y. - GUO, Z., The degenerate logistic model and a singularly mixed boundary blow-up problem. Preprint. Zbl1194.35148MR2170304
- DYNKIN, E.B. - KUZNETSOV, S.E., Trace on the boundary for solutions of nonlinear differential equations. Trans. A.M.S., 350, 1998, 4499-4519. Zbl0911.60061MR1422602DOI10.1090/S0002-9947-98-01952-7
- DYNKIN, E.B. - KUZNETSOV, S.E., Solutions of nonlinear differential equtions on a Riemannian manifold and their trace on the Martin boundary. Trans. A.M.S., 350, 1998, 4521-4552. Zbl0911.60062MR1443191DOI10.1090/S0002-9947-98-02006-6
- DYNKIN, E.B. - KUZNETSOV, S.E., Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations. Comm. Pure Appl. Math., 51, 1998, 897-936. Zbl0934.35049MR1620224DOI10.1002/(SICI)1097-0312(199808)51:8<897::AID-CPA2>3.0.CO;2-0
- FABBRI, J. - LICOIS, J.-R., Behavior at boundary of solutions of a weakly superlinear elliptic equation. Adv. Nonlinear Studies, 2, 2002, 147-176. Zbl1125.35357MR1896095
- GMIRA, A. - VÉRON, L., Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J., 64, 1991, 271-324. Zbl0766.35015MR1136377DOI10.1215/S0012-7094-91-06414-8
- GRILLOT, M. - VÉRON, L., Boundary trace of solutions of the Prescribed Gaussian curvature equation. Proc. Roy. Soc. Edinburgh, 130 A, 2000, 1-34. Zbl0956.35053MR1769241
- KELLER, J.B., On solutions of . Comm. Pure Appl. Math., 10, 1957, 503-510. Zbl0090.31801MR91407
- LE GALL, J.F., Les solutions positives de dans le disque unité. C.R. Acad. Sci. Paris, 317, Ser. I, 1993, 873-878. Zbl0791.60049MR1246656
- LE GALL, J.F., The brownian snake and solutions of in a domain. Prob. Theory Rel. Fields, 102, 1995, 393-432. Zbl0826.60062MR1339740DOI10.1007/BF01192468
- MARCUS, M. - VÉRON, L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré, 14, 1997, 237-274. Zbl0877.35042MR1441394DOI10.1016/S0294-1449(97)80146-1
- MARCUS, M. - VÉRON, L., Traces au bord des solutions positives d’équations elliptiques non-linéaires. C.R. Acad. Sci. Paris, 321, Ser. I, 1995, 179-184. Zbl0837.35053MR1345443
- MARCUS, M. - VÉRON, L., Traces au bord des solutions positives d’équations elliptiques et paraboliques non-linéaires: résultats d’existence et d’unicité. C.R. Acad. Sci. Paris, 323, Ser. I, 1996, 603-608. Zbl0858.35127MR1411050
- MARCUS, M. - VÉRON, L., The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case. Arch. Rat. Mech. Anal., 144, 1998, 201-231. Zbl0924.35050MR1658392DOI10.1007/s002050050116
- MARCUS, M. - VÉRON, L., The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case. J. Math. Pures Appl., 77, 1998, 481-524. Zbl0933.35081MR1626800DOI10.1016/S0021-7824(98)80028-7
- MARCUS, M. - VÉRON, L., Removable singularities and boundary traces. J. Math. Pures Appl., 80, 2001, 879-900. Zbl1134.35365MR1865379DOI10.1016/S0021-7824(01)01209-0
- MARCUS, M. - VÉRON, L., The boundary trace and generalized B.V.P. for semilinear elliptic equations with a strong absorption. Comm. Pure Appl. Math., 56, 2003, 689-731. Zbl1121.35314MR1959738DOI10.1002/cpa.3037
- MARCUS, M. - VÉRON, L., Initial trace of positive solutions to semilinear parabolic inequalities. Adv. Nonlinear Studies, 2, 2002, 395-436. Zbl1021.35051MR1936045
- MARCUS, M. - VÉRON, L., Boundary trace of positive solutions to nonlinear elliptic inequalities. Ann. Scu. Norm. Sup. Pisa, to appear. Zbl1121.35057
- OSSERMAN, R., On the inequality . Pacific J. Math., 7, 1957, 1641-1647. Zbl0083.09402MR98239
- RICHARD, Y. - VÉRON, L., Isotropic singularities of nonlinear elliptic inequalities. Ann. Inst. H. Poincaré, 6, 1989, 37-72. Zbl0702.35083MR984147
- VÉRON, L., Semilinear elliptic equations with uniform blow-up on the boundary. J. Anal. Math., 59, 1992, 231-250. Zbl0802.35042MR1226963DOI10.1007/BF02790229
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.