Boundary trace of positive solutions of nonlinear elliptic inequalities

Moshe Marcus[1]; Laurent Véron[2]

  • [1] Department of Mathematics, Israel Institute of Technology Technion, Haifa 32000, Israel
  • [2] Université François Rabelais Tours 37200, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 481-533
  • ISSN: 0391-173X

Abstract

top
We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of - Δ u + g ( x , u ) 0 in a smooth domain Ω under very general assumptions on g . This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity is very degenerate near the boundary, for example if g ( x , u ) exp ( - ρ Ω - 1 ( x ) ) u q , we exhibit a new full boundary blow-up phenomenon.

How to cite

top

Marcus, Moshe, and Véron, Laurent. "Boundary trace of positive solutions of nonlinear elliptic inequalities." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 481-533. <http://eudml.org/doc/84538>.

@article{Marcus2004,
abstract = {We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of $-\Delta u+g(x,u)\ge 0$ in a smooth domain $\Omega $ under very general assumptions on $g$. This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity is very degenerate near the boundary, for example if $g(x,u)\approx \exp (-\rho ^\{-1\}_\{\partial \Omega \}(x))u^q$, we exhibit a new full boundary blow-up phenomenon.},
affiliation = {Department of Mathematics, Israel Institute of Technology Technion, Haifa 32000, Israel; Université François Rabelais Tours 37200, France},
author = {Marcus, Moshe, Véron, Laurent},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {481-533},
publisher = {Scuola Normale Superiore, Pisa},
title = {Boundary trace of positive solutions of nonlinear elliptic inequalities},
url = {http://eudml.org/doc/84538},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Marcus, Moshe
AU - Véron, Laurent
TI - Boundary trace of positive solutions of nonlinear elliptic inequalities
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 481
EP - 533
AB - We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of $-\Delta u+g(x,u)\ge 0$ in a smooth domain $\Omega $ under very general assumptions on $g$. This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity is very degenerate near the boundary, for example if $g(x,u)\approx \exp (-\rho ^{-1}_{\partial \Omega }(x))u^q$, we exhibit a new full boundary blow-up phenomenon.
LA - eng
UR - http://eudml.org/doc/84538
ER -

References

top
  1. [1] P. Baras – M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185-206. Zbl0519.35002MR743627
  2. [2] P. Baras – J. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. Zbl0556.35063MR742415
  3. [3] Ph. Benilan – H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, unpublished paper, see [6]. MR2058057
  4. [4] M. F. Bidaut-Véron – L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana 16 (2000), 477-513. Zbl0970.35058MR1813326
  5. [5] H. Brezis, Une équation semi-linéaire avec conditions aux limites dans L 1 , unpublished paper. See also [32]-Chap. 4. 
  6. [6] H. Brezis, Some variational problems of the Thomas-Fermi type, in “Variational Inequalities”, R. W. Cottle, F. Giannessi and J.-L. Lions (eds.), Wiley, Chichester (1980), 53-73. Zbl0643.35108MR578739
  7. [7] X. Cabre, Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems, preprint. MR2373729
  8. [8] R. Dautray – J. L. Lions, “Analyse Mathématique et Calcul Numérique”, Masson, Paris, 1987. Zbl0708.35003MR918560
  9. [9] J. Doob, “Classical Potential Theory and its Probabilistic Counterpart”, Springer-Verlag, Berlin-New York, 1984. Zbl0549.31001MR731258
  10. [10] E. B. Dynkin – S. E. Kuznetsov, Trace on the boundary for solutions of nonlinear differential equations, Trans. Amer. Math. Soc. 350 (1998), 4499-4519. Zbl0911.60061MR1422602
  11. [11] E. B. Dynkin – S. E. Kuznetsov, Solutions of nonlinear differential equtions on a Riemannian manifold and their trace on the Martin boundary, Trans. Amer. Math. Soc. 350 (1998), 4521-4552. Zbl0911.60062MR1443191
  12. [12] E. B. Dynkin – S. E. Kuznetsov, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. 51 (1998), 897-936. Zbl0934.35049MR1620224
  13. [13] J. Fabbri – J. R. Licois, Behavior at boundary of solutions of a weakly superlinear elliptic equation, Adv. Nonlinear Stud. 2 (2002), 147-176. Zbl1125.35357MR1896095
  14. [14] D. Gilbarg – N. S. Trudinger, “Partial Differential Equations of Second Order”, 2nd Ed. Springer-Verlag, Berlin-New York, 1983. Zbl0562.35001MR737190
  15. [15] A. Gmira – L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), 271-324. Zbl0766.35015MR1136377
  16. [16] M. Grillot – L. Véron, Boundary trace of solutions of the Prescribed Gaussian curvature equation, Proc. Roy. Soc. Edinburgh 130 A (2000), 1-34. Zbl0956.35053MR1769241
  17. [17] I. Iscoe, On the support of measure-valued critical branching Brownian motion, Ann. Prob. 16 (1988), 200-221. Zbl0635.60094MR920265
  18. [18] J. B. Keller, On solutions of Δ u = f ( u ) , Comm. Pure Appl. Math. 10 (1957), 503-510. Zbl0090.31801MR91407
  19. [19] J. F. Le Gall, Les solutions positives de Δ u = u 2 dans le disque unité, C.R. Acad. Sci. Paris 317 Ser. I (1993), 873-878. Zbl0791.60049MR1246656
  20. [20] J. F. Le Gall, The brownian snake and solutions of Δ u = u 2 in a domain, Probab. Theory Related Fields 102 (1995), 393-432. Zbl0826.60062MR1339740
  21. [21] M. Marcus – L. Véron, Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré 14 (1997), 237-274. Zbl0877.35042MR1441394
  22. [22] M. Marcus – L. Véron, Traces au bord des solutions positives d’équations elliptiques non-linéaires, C.R. Acad. Sci. Paris 321 Ser. I (1995), 179-184. Zbl0837.35053MR1345443
  23. [23] M. Marcus – L. Véron, Traces au bord des solutions positives d’équations elliptiques et paraboliques non-linéaires: résultats d’existence et d’unicité, C.R. Acad. Sci. Paris 323 Ser. I (1996), 603-608. Zbl0858.35127MR1411050
  24. [24] M. Marcus – L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. Anal. 144 (1998), 201-231. Zbl0924.35050MR1658392
  25. [25] M. Marcus – L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998). Zbl0933.35081MR1626800
  26. [26] M. Marcus – L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879-900. Zbl1134.35365MR1865379
  27. [27] M. Marcus – L. Véron, The boundary trace and generalyzed boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. 56 (2003), 0689-0731. Zbl1121.35314MR1959738
  28. [28] M. Marcus – L. Véron, Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Studies 2 (2002), 395-436. Zbl1021.35051MR1936045
  29. [29] A. Ratto – M. Rigoli – L. Véron, Scalar curvature and conformal deformation of hyperbolic space, J. Funct. Anal. 121 (1994), 15-77. Zbl0801.53026MR1270588
  30. [30] Y. Richard – L. Véron, Isotropic singularities of nonlinear elliptic inequalities, Ann. Inst. H. Poincaré 6 (1989), 37-72. Zbl0702.35083MR984147
  31. [31] J. L. Vazquez, An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion, Nonlinear Anal. 5 (1981), 119-135. Zbl0446.35018MR597285
  32. [32] L. Véron, “Singularities of Solutions of Second Order Quasilinear Equations”, Pitman Research Notes in Math. 353, Addison Wesley Longman Inc., 1996. Zbl0858.35018MR1424468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.