Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity

Antonio Ambrosetti; Veronica Felli; Andrea Malchiodi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 2, page 81-86
  • ISSN: 1120-6330

Abstract

top
In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.

How to cite

top

Ambrosetti, Antonio, Felli, Veronica, and Malchiodi, Andrea. "Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 81-86. <http://eudml.org/doc/252395>.

@article{Ambrosetti2004,
abstract = {In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.},
author = {Ambrosetti, Antonio, Felli, Veronica, Malchiodi, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear Schrödinger equations; Weighted Sobolev spaces; Critical point theory; nonlinear Schrödinger equations; weighted Sobolev spaces; critical point theory},
language = {eng},
month = {6},
number = {2},
pages = {81-86},
publisher = {Accademia Nazionale dei Lincei},
title = {Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity},
url = {http://eudml.org/doc/252395},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Felli, Veronica
AU - Malchiodi, Andrea
TI - Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 81
EP - 86
AB - In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.
LA - eng
KW - Nonlinear Schrödinger equations; Weighted Sobolev spaces; Critical point theory; nonlinear Schrödinger equations; weighted Sobolev spaces; critical point theory
UR - http://eudml.org/doc/252395
ER -

References

top
  1. AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Analyse Non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
  2. AMBROSETTI, A. - FELLI, V. - MALCHIODI, A., Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. Preprint S.I.S.S.A., n. 16/2004/M, Febr. 2004; to appear on Journal Europ. Math. Soc. Zbl1064.35175MR2148536
  3. AMBROSETTI, A. - MALCHIODI, A. - SECCHI, S., Multiplicity results for some nonlinear singularly perturbed elliptic problems on R n . Arch. Rat. Mech. Anal., 159, 2001, 253-271. Zbl1040.35107MR1857674DOI10.1007/s002050100152
  4. LI, Y.Y., On a singularly perturbed elliptic equation. Adv. Diff. Eqns., 2, 1997, 955-980. Zbl1023.35500MR1606351
  5. NOUSSAIR, E.S. - SWANSON, C.A., Decaying solutions of semilinear elliptic equations in R N . SIAM J. Math. Anal., 20, 6, 1989, 1336-1343. Zbl0696.35051MR1019304DOI10.1137/0520088
  6. OPIC, B. - KUFNER, A., Hardy-type inequalities. Pitman Res. Notes in Math. Series219, Longman Scientific & Technical, Harlow1990. Zbl0698.26007MR1069756
  7. SCHNEIDER, M., Entire solutions of semilinear elliptic problems with indefinite nonlinearities. PhD Thesis, Universität Mainz, 2001. Zbl1134.35347

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.