Characterization of the interior regularity for parabolic systems with discontinuous coefficients
Dian K. Palagachev; Lubomira G. Softova
- Volume: 16, Issue: 2, page 125-132
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topPalagachev, Dian K., and Softova, Lubomira G.. "Characterization of the interior regularity for parabolic systems with discontinuous coefficients." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.2 (2005): 125-132. <http://eudml.org/doc/252397>.
@article{Palagachev2005,
abstract = {We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order $2b$ with discontinuous principal coefficients belonging to $VMO \bigcap L^\{\infty\}$. By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order $2b-1$.},
author = {Palagachev, Dian K., Softova, Lubomira G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Parabolic systems; A priori estimates; Morrey spaces; Hölder regularity; VMO; parabolic systems; a priori estimates},
language = {eng},
month = {6},
number = {2},
pages = {125-132},
publisher = {Accademia Nazionale dei Lincei},
title = {Characterization of the interior regularity for parabolic systems with discontinuous coefficients},
url = {http://eudml.org/doc/252397},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Palagachev, Dian K.
AU - Softova, Lubomira G.
TI - Characterization of the interior regularity for parabolic systems with discontinuous coefficients
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/6//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 2
SP - 125
EP - 132
AB - We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order $2b$ with discontinuous principal coefficients belonging to $VMO \bigcap L^{\infty}$. By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order $2b-1$.
LA - eng
KW - Parabolic systems; A priori estimates; Morrey spaces; Hölder regularity; VMO; parabolic systems; a priori estimates
UR - http://eudml.org/doc/252397
ER -
References
top- AGMON, S. - DOUGLIS, A. - NIRENBERG, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math., vol. 12, 1959, 623-727. Zbl0093.10401MR125307
- AGMON, S. - DOUGLIS, A. - NIRENBERG, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math., vol. 17, 1964, 35-92. Zbl0123.28706MR162050
- CAMPANATO, S., Proprietà di Hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa, vol. 17, 1963, 175-188. Zbl0121.29201MR156188
- CHIARENZA, F. - FRANCIOSI, M. - FRASCA, M., -Estimates for linear elliptic systems with discontinuous coefficients. Rend. Mat. Acc. Lincei, s. 9, vol. 5, 1994, 27-32. Zbl0803.35016MR1273890
- DA PRATO, G., Spazi e loro proprietà. Ann. Mat. Pura Appl., vol. 69, 1965, 383-392. Zbl0145.16207MR192330
- DOUGLIS, A. - NIRENBERG, L., Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math., vol. 8, 1955, 503-538. Zbl0066.08002MR75417
- EJDEL'MAN, S.D., Parabolic Equations. In: YU.V. EGOROV - M.A. SHUBIN (eds.), Partial Differential Equations VI: Elliptic and Parabolic Operators. Encycl. Math. Sci., vol. 63, Springer-Verlag, Berlin1994, 203-316. Zbl0802.35061MR1313734DOI10.1007/978-3-642-57876-2
- FABES, E.B. - RIVIÈRE, N., Singular integrals with mixed homogeneity. Studia Math., vol. 27, 1966, 19-38. Zbl0161.32403MR209787
- FRIEDMAN, A., Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
- JOHN, F. - NIRENBERG, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math., vol. 14, 1961, 415-426. Zbl0102.04302MR131498
- KRONZ, M., Some function spaces on spaces of homogeneous type. Manuscr. Math., vol. 106, 2001, 219-248. Zbl0989.43004MR1865566DOI10.1007/s002290100205
- MAUGERI, A. - PALAGACHEV, D.K. - SOFTOVA, L.G., Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley-VCH, Berlin2000. Zbl0958.35002MR2260015DOI10.1002/3527600868
- PALAGACHEV, D.K. - SOFTOVA, L.G., Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's. Potential Anal., vol. 20, 2004, 237-263. Zbl1036.35045MR2032497DOI10.1023/B:POTA.0000010664.71807.f6
- SARASON, D., Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., vol. 207, 1975, 391-405. Zbl0319.42006MR377518
- SOLONNIKOV, V.A., On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., vol. 83, 1965 (in Russian); English translation: O.A. LADYZHENSKAYA (ed.), Boundary Value Problems of Mathematical Physics III. Amer. Math. Soc., Providence, R.I., 1967. Zbl0164.12502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.