Exact controllability of shells in minimal time

Paola Loreti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 1, page 43-48
  • ISSN: 1120-6330

Abstract

top
We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].

How to cite

top

Loreti, Paola. "Exact controllability of shells in minimal time." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.1 (2001): 43-48. <http://eudml.org/doc/252401>.

@article{Loreti2001,
abstract = {We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].},
author = {Loreti, Paola},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Shells; Fourier method; Ingham type inequalities; shells},
language = {eng},
month = {3},
number = {1},
pages = {43-48},
publisher = {Accademia Nazionale dei Lincei},
title = {Exact controllability of shells in minimal time},
url = {http://eudml.org/doc/252401},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Loreti, Paola
TI - Exact controllability of shells in minimal time
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/3//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 1
SP - 43
EP - 48
AB - We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].
LA - eng
KW - Shells; Fourier method; Ingham type inequalities; shells
UR - http://eudml.org/doc/252401
ER -

References

top
  1. Baiocchi, C. - Komornik, V. - Loreti, P., Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital., B (8), II - B, n. 1 febbraio 1999, 33-63. Zbl0924.42022MR1794544
  2. Baiocchi, C. - Komornik, V. - Loreti, P., Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. C. R. Acad. Sci. Paris Sér. I Math., 330 (4), 2000, 281-286. Zbl0964.42019MR1753294DOI10.1016/S0764-4442(00)00116-6
  3. Carleson, L. - Malliavin, P. - Neuberger, J. - Wermer, J., The Collected Works of Arne Beurling. Vol. 2, Birkhäuser, Boston1989. 
  4. Geymonat, G. - Loreti, P. - Valente, V., Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989. 
  5. Geymonat, G. - Loreti, P. - Valente, V., Exact Controllability of a shallow shell model. Int. Series of Num. Math., 107, 1992, 85-97. Zbl0766.73044MR1223361
  6. Geymonat, G. - Loreti, P. - Valente, V., Exact controllability of a spherical shell via harmonic analysis. In: J.-L. Lions - C. Baiocchi (eds.), Boundary Values Problems for Partial Differential Equations and Applications. Masson, Paris1993. Zbl0803.73052MR1260466
  7. Geymonat, G. - Loreti, P. - Valente, V., Spectral problems for thin shells and exact controllability. In: Spectral Analysis of Complex Structures. Travaux en cours, 49, Hermann, Paris1995, 35-57. Zbl0840.35112MR1488734
  8. Ingham, A. E., Some trigonometrical inequalities with applications in the theory of series. Math. Z., 41, 1936, 367-379. Zbl0014.21503MR1545625DOI10.1007/BF01180426
  9. Jaffard, S. - Tucsnak, M. - Zuazua, E., On a theorem of Ingham. J. Fourier Anal. Appl., 3, 1997, n. 5, 577-582. Zbl0939.42004MR1491935DOI10.1007/BF02648885
  10. Komornik, V. - Loreti, P., Ingham type theorems for vector-valued functions and observability of coupled linear systems. SIAM J. Control Optim., 37, 1998, 461-485. Zbl0963.93013MR1655862DOI10.1137/S0363012997317505
  11. Komornik, V. - Loreti, P., Observability of compactly perturbed systems. J. Math. Anal. Appl., 243, 2000, 409-428. Zbl0952.34047MR1741532DOI10.1006/jmaa.1999.6678
  12. Lagnese, J., Boundary Stabilization of Thin Plates. SIAMStudies in Appl. Math., Philadelphia1989. Zbl0696.73034MR1061153DOI10.1137/1.9781611970821
  13. Lagnese, J. - Lions, J.-L., Modelling, Analysis and Control of Thin Plates. Masson, Paris1988. Zbl0662.73039MR953313
  14. Lions, J.-L., Exact controllability, stabilization and perturbations for distributed systems. SIAM J. Control Optim., 30, 1988, 1-68. Zbl0644.49028MR931277DOI10.1137/1030001
  15. Lions, J.-L., Contrôlabilité exacte et stabilisation de systèmes distribués. Voll. 1-2, Masson, Paris1988. Zbl0653.93002
  16. Loreti, P., Application of a new Ingham type theorem to the control of spherical shells. In: V. Zakharov (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000. 
  17. Love, A. E. H., A treatise on the mathematical theory of elasticity. Dover, New York1944. Zbl0063.03651MR10851JFM47.0750.09
  18. Sanchez, E., Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl., 71, 1992, 379-406. Zbl0833.47011MR1191581
  19. Timoshenko, S., Theory of elastic stability. McGraw-Hill, New York1936. MR134026
  20. Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford1962. Zbl0099.05201MR176151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.