On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
Roberto Giambò; Fabio Giannoni; Paolo Piccione
- Volume: 16, Issue: 2, page 73-85
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMBROSETTI, A. - COTI ZELATI, V., Multiple Homoclinic Orbits for a Class of Conservative Systems. Rend. Sem. Mat. Univ. Padova, vol. 89, 1993, 177-194. Zbl0806.58018MR1229052
- BOS, W., Kritische Sehenen auf Riemannischen Elementarraumstücken. Math. Ann., 151, 1963, 431-451. Zbl0113.15204MR159297
- COTI ZELATI, V. - RABINOWITZ, P.H., Homoclinic Orbits for second Order Hamiltonian Systems Possessing Superquadratic Potentials. J. Amer. Math. Soc., 4, 1991, 693-727. Zbl0744.34045MR1119200DOI10.2307/2939286
- DO CARMO, M.P., Riemannian Geometry. Birkhäuser, Boston1992. Zbl0752.53001MR1138207
- GIAMBÓ, R. - GIANNONI, F. - PICCIONE, P., Orthogonal Geodesic Chords, Brake Orbits and Homoclinic Orbits in Riemannian Manifolds. Preprint 2004. Zbl1118.37031
- GIAMBÓ, R. - GIANNONI, F. - PICCIONE, P., Multiple brake orbits and homoclinics in Riemannian manifolds. Preprint 2004. Zbl1228.37044
- GIANNONI, F. - MAJER, P., On the effect of the domain on the number of orthogonal geodesic chords. Diff. Geom. Appl., 7, 1997, 341-364. Zbl0903.53028MR1485641DOI10.1016/S0926-2245(96)00055-1
- GIANNONI, F. - RABINOWITZ, P.H., On the Multiplicity of Homoclinic Orbits on Riemannian Manifolds for a Class of Second Order Hamiltonian Systems. No.D.E.A., 1, 1994, 1-46. Zbl0823.34050MR1273342DOI10.1007/BF01194038
- LONG, Y. - ZHU, C., Closed characteristics on compact convex hypersurfaces in . Ann. of Math., (2), 155, 2002, no. 2, 317-368. Zbl1028.53003MR1906590DOI10.2307/3062120
- LIU, C. - LONG, Y. - ZHU, C., Multiplicity of closed characteristics on symmetric convex hypersurfaces in . Math. Ann., 323, 2002, 201-215. Zbl1005.37030MR1913039DOI10.1007/s002089100257
- LUSTERNIK, L. - SCHNIRELMAN, L., Méthodes Topologiques dans les Problèmes Variationelles. Hermann, Paris1934. Zbl0011.02803JFM56.1134.02
- MAHWIN, J. - WILLEM, M., Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York-Berlin1988. Zbl0676.58017
- PETUREL, E., Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. PDE, 12, 2001, 117-143. Zbl1052.37049MR1821234DOI10.1007/PL00009909
- RABINOWITZ, P.H., Periodic and Eteroclinic Orbits for a Periodic Hamiltonian System. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 6, 1989, 331-346. Zbl0701.58023MR1030854
- SERÉ, E., Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems. Math. Z., 209, 1992, 27-42. Zbl0725.58017MR1143210DOI10.1007/BF02570817
- SERÉ, E., Looking for the Bernoulli Shift. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 10, 1993, 561-590. Zbl0803.58013MR1249107
- STRUWE, M., Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 3rd edition, Springer-Verlag, Berlin2000. Zbl0746.49010MR1736116
- TANAKA, K., A Note on the Existence of Multiple Homoclinic Orbits for a Perturbed Radial Potential. No.D.E.A., 1, 1994, 149-162. Zbl0819.34032MR1273347DOI10.1007/BF01193949