On the multiplicity of brake orbits and homoclinics in Riemannian manifolds

Roberto Giambò; Fabio Giannoni; Paolo Piccione

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 2, page 73-85
  • ISSN: 1120-6330

Abstract

top
Let M , g be a complete Riemannian manifold, Ω M an open subset whose closure is diffeomorphic to an annulus. If Ω is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in Ω ¯ = Ω Ω starting orthogonally to one connected component of Ω and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim M pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.

How to cite

top

Giambò, Roberto, Giannoni, Fabio, and Piccione, Paolo. "On the multiplicity of brake orbits and homoclinics in Riemannian manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.2 (2005): 73-85. <http://eudml.org/doc/252403>.

@article{Giambò2005,
abstract = {Let $(M,g)$ be a complete Riemannian manifold, $\Omega \subset M$ an open subset whose closure is diffeomorphic to an annulus. If $\partial \Omega$ is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in $\overline\{\Omega\} = \Omega \bigcup \partial \Omega$ starting orthogonally to one connected component of $\partial \Omega$ and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least $\text\{dim\}(M)$ pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.},
author = {Giambò, Roberto, Giannoni, Fabio, Piccione, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Brake orbits; Homoclinics; Variational methods; brake orbits; homoclinics; variational methods},
language = {eng},
month = {6},
number = {2},
pages = {73-85},
publisher = {Accademia Nazionale dei Lincei},
title = {On the multiplicity of brake orbits and homoclinics in Riemannian manifolds},
url = {http://eudml.org/doc/252403},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Giambò, Roberto
AU - Giannoni, Fabio
AU - Piccione, Paolo
TI - On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/6//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 2
SP - 73
EP - 85
AB - Let $(M,g)$ be a complete Riemannian manifold, $\Omega \subset M$ an open subset whose closure is diffeomorphic to an annulus. If $\partial \Omega$ is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in $\overline{\Omega} = \Omega \bigcup \partial \Omega$ starting orthogonally to one connected component of $\partial \Omega$ and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least $\text{dim}(M)$ pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
LA - eng
KW - Brake orbits; Homoclinics; Variational methods; brake orbits; homoclinics; variational methods
UR - http://eudml.org/doc/252403
ER -

References

top
  1. AMBROSETTI, A. - COTI ZELATI, V., Multiple Homoclinic Orbits for a Class of Conservative Systems. Rend. Sem. Mat. Univ. Padova, vol. 89, 1993, 177-194. Zbl0806.58018MR1229052
  2. BOS, W., Kritische Sehenen auf Riemannischen Elementarraumstücken. Math. Ann., 151, 1963, 431-451. Zbl0113.15204MR159297
  3. COTI ZELATI, V. - RABINOWITZ, P.H., Homoclinic Orbits for second Order Hamiltonian Systems Possessing Superquadratic Potentials. J. Amer. Math. Soc., 4, 1991, 693-727. Zbl0744.34045MR1119200DOI10.2307/2939286
  4. DO CARMO, M.P., Riemannian Geometry. Birkhäuser, Boston1992. Zbl0752.53001MR1138207
  5. GIAMBÓ, R. - GIANNONI, F. - PICCIONE, P., Orthogonal Geodesic Chords, Brake Orbits and Homoclinic Orbits in Riemannian Manifolds. Preprint 2004. Zbl1118.37031
  6. GIAMBÓ, R. - GIANNONI, F. - PICCIONE, P., Multiple brake orbits and homoclinics in Riemannian manifolds. Preprint 2004. Zbl1228.37044
  7. GIANNONI, F. - MAJER, P., On the effect of the domain on the number of orthogonal geodesic chords. Diff. Geom. Appl., 7, 1997, 341-364. Zbl0903.53028MR1485641DOI10.1016/S0926-2245(96)00055-1
  8. GIANNONI, F. - RABINOWITZ, P.H., On the Multiplicity of Homoclinic Orbits on Riemannian Manifolds for a Class of Second Order Hamiltonian Systems. No.D.E.A., 1, 1994, 1-46. Zbl0823.34050MR1273342DOI10.1007/BF01194038
  9. LONG, Y. - ZHU, C., Closed characteristics on compact convex hypersurfaces in R 2 n . Ann. of Math., (2), 155, 2002, no. 2, 317-368. Zbl1028.53003MR1906590DOI10.2307/3062120
  10. LIU, C. - LONG, Y. - ZHU, C., Multiplicity of closed characteristics on symmetric convex hypersurfaces in R 2 n . Math. Ann., 323, 2002, 201-215. Zbl1005.37030MR1913039DOI10.1007/s002089100257
  11. LUSTERNIK, L. - SCHNIRELMAN, L., Méthodes Topologiques dans les Problèmes Variationelles. Hermann, Paris1934. Zbl0011.02803JFM56.1134.02
  12. MAHWIN, J. - WILLEM, M., Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York-Berlin1988. Zbl0676.58017
  13. PETUREL, E., Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. PDE, 12, 2001, 117-143. Zbl1052.37049MR1821234DOI10.1007/PL00009909
  14. RABINOWITZ, P.H., Periodic and Eteroclinic Orbits for a Periodic Hamiltonian System. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 6, 1989, 331-346. Zbl0701.58023MR1030854
  15. SERÉ, E., Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems. Math. Z., 209, 1992, 27-42. Zbl0725.58017MR1143210DOI10.1007/BF02570817
  16. SERÉ, E., Looking for the Bernoulli Shift. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 10, 1993, 561-590. Zbl0803.58013MR1249107
  17. STRUWE, M., Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 3rd edition, Springer-Verlag, Berlin2000. Zbl0746.49010MR1736116
  18. TANAKA, K., A Note on the Existence of Multiple Homoclinic Orbits for a Perturbed Radial Potential. No.D.E.A., 1, 1994, 149-162. Zbl0819.34032MR1273347DOI10.1007/BF01193949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.