An extension of Mahler's theorem to simply connected nilpotent groups
- Volume: 16, Issue: 4, page 265-270
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMoskowitz, Martin. "An extension of Mahler's theorem to simply connected nilpotent groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.4 (2005): 265-270. <http://eudml.org/doc/252431>.
@article{Moskowitz2005,
abstract = {This Note gives an extension of Mahler's theorem on lattices in $\mathbb\{R\}^\{n\}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.},
author = {Moskowitz, Martin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {log lattices; subgroups of finite index; fundamental domains; measure preserving automorphisms; equivariant maps},
language = {eng},
month = {12},
number = {4},
pages = {265-270},
publisher = {Accademia Nazionale dei Lincei},
title = {An extension of Mahler's theorem to simply connected nilpotent groups},
url = {http://eudml.org/doc/252431},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Moskowitz, Martin
TI - An extension of Mahler's theorem to simply connected nilpotent groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/12//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 4
SP - 265
EP - 270
AB - This Note gives an extension of Mahler's theorem on lattices in $\mathbb{R}^{n}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
LA - eng
KW - log lattices; subgroups of finite index; fundamental domains; measure preserving automorphisms; equivariant maps
UR - http://eudml.org/doc/252431
ER -
References
top- AUSLANDER, L., Lecture notes on nil-theta functions. CBMS Reg. Conf. Series Math., 34, Amer. Math. Soc., Providence1977. Zbl0421.22001MR466409
- BARBANO, P., Automorphisms and quasiconformal mappings of Heisenberg type groups. J. of Lie Theory, vol. 8, 1998, 255-277. Zbl0906.22007MR1650337
- BOREL, A., Introduction aux Groups Arithmetiques. Hermann, Paris1969. Zbl0186.33202MR244260
- BOREL, A. - HARISH-CHANDRA, , Arithmetic subgroups of algebraic groups. Annals of Math., 75, 1962, 485-535. Zbl0107.14804MR147566
- CHABAUTY, C., Limites d'ensembles et géométrie des nombres. Bull. Soc. Math. de France, 78, 1950, 143-151. Zbl0039.04101MR38983
- CRANDALL, G. - DODZIUK, J., Integral Structures on -type Lie Algebras. J. of Lie Theory, 12, 2002, 69-79. Zbl1035.17018MR1885037
- HOCHSCHILD, G.P., The Structure of Lie Groups. Holden Day, San Francisco1965. Zbl0131.02702MR207883
- MAHLER, K., On Lattice Points in -dimensional Star Bodies I, Existence theorems. Proc. Roy. Soc. London A, 187, 1946,151-187. Zbl0060.11710MR17753
- MALCEV, A., On a class of homogeneous spaces. Amer. Math. Soc. Translation Series, 39, 1951. Zbl0034.01701MR39734
- MARGULIS, G., Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer-Verlag, Berlin-Heidelberg-New York1990. Zbl0732.22008MR1090825
- MOORE, C., Decompositions of Unitary Representations defined by Discrete subgroups of Nilpotent Groups. Annals of Math., 82, 1965. Zbl0139.30702MR181701
- MOSAK, R. - MOSKOWITZ, M., Zariski density in Lie groups. Israel J. Math., 52, 1985, 1-14. Zbl0585.22009MR815596DOI10.1007/BF02776074
- MOSAK, R. - MOSKOWITZ, M., Stabilizers of lattices in Lie groups. J. of Lie Theory, vol. 4, 1994, 1-16. Zbl0823.22012MR1326948
- MOSKOWITZ, M., Some Remarks on Automorphisms of Bounded Displacement and Bounded Cocycles. Monatshefte für Math., 85, 1978, 323-336. Zbl0391.22004MR510628DOI10.1007/BF01305961
- WHITNEY, H., Elementary structure of real algebraic varieties. Ann. of Math., 66, 1957, 545-556. Zbl0078.13403MR95844
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.