An extension of Mahler's theorem to simply connected nilpotent groups

Martin Moskowitz

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 4, page 265-270
  • ISSN: 1120-6330

Abstract

top
This Note gives an extension of Mahler's theorem on lattices in R n to simply connected nilpotent groups with a Q -structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.

How to cite

top

Moskowitz, Martin. "An extension of Mahler's theorem to simply connected nilpotent groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.4 (2005): 265-270. <http://eudml.org/doc/252431>.

@article{Moskowitz2005,
abstract = {This Note gives an extension of Mahler's theorem on lattices in $\mathbb\{R\}^\{n\}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.},
author = {Moskowitz, Martin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {log lattices; subgroups of finite index; fundamental domains; measure preserving automorphisms; equivariant maps},
language = {eng},
month = {12},
number = {4},
pages = {265-270},
publisher = {Accademia Nazionale dei Lincei},
title = {An extension of Mahler's theorem to simply connected nilpotent groups},
url = {http://eudml.org/doc/252431},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Moskowitz, Martin
TI - An extension of Mahler's theorem to simply connected nilpotent groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/12//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 4
SP - 265
EP - 270
AB - This Note gives an extension of Mahler's theorem on lattices in $\mathbb{R}^{n}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
LA - eng
KW - log lattices; subgroups of finite index; fundamental domains; measure preserving automorphisms; equivariant maps
UR - http://eudml.org/doc/252431
ER -

References

top
  1. AUSLANDER, L., Lecture notes on nil-theta functions. CBMS Reg. Conf. Series Math., 34, Amer. Math. Soc., Providence1977. Zbl0421.22001MR466409
  2. BARBANO, P., Automorphisms and quasiconformal mappings of Heisenberg type groups. J. of Lie Theory, vol. 8, 1998, 255-277. Zbl0906.22007MR1650337
  3. BOREL, A., Introduction aux Groups Arithmetiques. Hermann, Paris1969. Zbl0186.33202MR244260
  4. BOREL, A. - HARISH-CHANDRA, , Arithmetic subgroups of algebraic groups. Annals of Math., 75, 1962, 485-535. Zbl0107.14804MR147566
  5. CHABAUTY, C., Limites d'ensembles et géométrie des nombres. Bull. Soc. Math. de France, 78, 1950, 143-151. Zbl0039.04101MR38983
  6. CRANDALL, G. - DODZIUK, J., Integral Structures on H -type Lie Algebras. J. of Lie Theory, 12, 2002, 69-79. Zbl1035.17018MR1885037
  7. HOCHSCHILD, G.P., The Structure of Lie Groups. Holden Day, San Francisco1965. Zbl0131.02702MR207883
  8. MAHLER, K., On Lattice Points in n -dimensional Star Bodies I, Existence theorems. Proc. Roy. Soc. London A, 187, 1946,151-187. Zbl0060.11710MR17753
  9. MALCEV, A., On a class of homogeneous spaces. Amer. Math. Soc. Translation Series, 39, 1951. Zbl0034.01701MR39734
  10. MARGULIS, G., Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer-Verlag, Berlin-Heidelberg-New York1990. Zbl0732.22008MR1090825
  11. MOORE, C., Decompositions of Unitary Representations defined by Discrete subgroups of Nilpotent Groups. Annals of Math., 82, 1965. Zbl0139.30702MR181701
  12. MOSAK, R. - MOSKOWITZ, M., Zariski density in Lie groups. Israel J. Math., 52, 1985, 1-14. Zbl0585.22009MR815596DOI10.1007/BF02776074
  13. MOSAK, R. - MOSKOWITZ, M., Stabilizers of lattices in Lie groups. J. of Lie Theory, vol. 4, 1994, 1-16. Zbl0823.22012MR1326948
  14. MOSKOWITZ, M., Some Remarks on Automorphisms of Bounded Displacement and Bounded Cocycles. Monatshefte für Math., 85, 1978, 323-336. Zbl0391.22004MR510628DOI10.1007/BF01305961
  15. WHITNEY, H., Elementary structure of real algebraic varieties. Ann. of Math., 66, 1957, 545-556. Zbl0078.13403MR95844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.