Essential m-dissipativity of Kolmogorov operators corresponding to periodic 2 D -Navier Stokes equations

Viorel Barbu; Giuseppe Da Prato; Arnaud Debussche

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 1, page 29-38
  • ISSN: 1120-6330

Abstract

top
We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space L 2 H , ν where ν is an invariant measure

How to cite

top

Barbu, Viorel, Da Prato, Giuseppe, and Debussche, Arnaud. "Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.1 (2004): 29-38. <http://eudml.org/doc/252438>.

@article{Barbu2004,
abstract = {We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space $L^\{2\}(H,\nu)$ where $\nu$ is an invariant measure},
author = {Barbu, Viorel, Da Prato, Giuseppe, Debussche, Arnaud},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Stochastic Navier-Stokes equations; Kolmogorov operators; Invariant measures; invariant measures},
language = {eng},
month = {3},
number = {1},
pages = {29-38},
publisher = {Accademia Nazionale dei Lincei},
title = {Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations},
url = {http://eudml.org/doc/252438},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Barbu, Viorel
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
TI - Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/3//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 1
SP - 29
EP - 38
AB - We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space $L^{2}(H,\nu)$ where $\nu$ is an invariant measure
LA - eng
KW - Stochastic Navier-Stokes equations; Kolmogorov operators; Invariant measures; invariant measures
UR - http://eudml.org/doc/252438
ER -

References

top
  1. BARBU, V. - DA PRATO, G., The transition semigroup of stochastic Navier-Stokes equations in 2 D . Infinite Dimensional Analysis, Quantum Probability and related topics, to appear. 
  2. BRICMONT, J. - KUPIAINEN, A. - LEFEVERE, R., Exponential mixing of the 2 D stochastic Navier-Stokes dynamics. Commun. Math. Phys., 230, n. 1, 2002, 87-132. Zbl1033.76011MR1930573DOI10.1007/s00220-002-0708-1
  3. CERRAI, S., A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367. Zbl0817.47048MR1293091DOI10.1007/BF02573496
  4. DA PRATO, G. - TUBARO, L., Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126, 2001, 685-699. Zbl0996.47028MR1864036DOI10.1023/A:1013704610695
  5. DA PRATO, G. - ZABCZYK, J., Second Order Partial Differential Equations in Hilbert spaces. London Mathematical Society Lecture Notes n. 293, Cambridge University Press, 2002. Zbl1012.35001MR1985790DOI10.1017/CBO9780511543210
  6. FLANDOLI, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1, 1994, 403-423. Zbl0820.35108MR1300150DOI10.1007/BF01194988
  7. FLANDOLI, F. - MASLOWSKI, B., Ergodicity of the 2 D Navier-Stokes equation under random perturbations. Commun. Math. Phys., 171, 1995, 119-141. Zbl0845.35080MR1346374
  8. KUKSIN, S. - SHIRIKYAN, A., A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys., 221, n. 2, 2001, 351-366. Zbl0991.60056MR1845328DOI10.1007/s002200100479
  9. KUKSIN, S. - PIATNISKI, A. - SHIRIKYAN, A., A coupling approach to randomly forced nonlinear PDE’s. II. Commun. Math. Phys., 230, n. 1, 2002, 81-85. Zbl1010.60066MR1927233DOI10.1007/s00220-002-0707-2
  10. TEMAM, R., Navier-Stokes equations. Theory and numerical analysis. North-Holland, 1977. Zbl0568.35002
  11. WEINAN, E. - MATTINGLY, J.C. - SINAI, YA., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys., 224, n. 1, 2001, 83-106. Zbl0994.60065MR1868992DOI10.1007/s002201224083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.