Some results about dissipativity of Kolmogorov operators

Giuseppe Da Prato; Luciano Tubaro

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 4, page 685-699
  • ISSN: 0011-4642

Abstract

top
Given a Hilbert space H with a Borel probability measure ν , we prove the m -dissipativity in L 1 ( H , ν ) of a Kolmogorov operator K that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.

How to cite

top

Prato, Giuseppe Da, and Tubaro, Luciano. "Some results about dissipativity of Kolmogorov operators." Czechoslovak Mathematical Journal 51.4 (2001): 685-699. <http://eudml.org/doc/30665>.

@article{Prato2001,
abstract = {Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.},
author = {Prato, Giuseppe Da, Tubaro, Luciano},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity},
language = {eng},
number = {4},
pages = {685-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results about dissipativity of Kolmogorov operators},
url = {http://eudml.org/doc/30665},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Prato, Giuseppe Da
AU - Tubaro, Luciano
TI - Some results about dissipativity of Kolmogorov operators
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 685
EP - 699
AB - Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
LA - eng
KW - Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity
UR - http://eudml.org/doc/30665
ER -

References

top
  1. 10.1007/BF02573496, Semigroup Forum 49 (1994), 349–367. (1994) Zbl0817.47048MR1293091DOI10.1007/BF02573496
  2. Weakly continuous semigroups in the space of functions with polynomial growth, Dynam. Systems Appl. 4 (1995), 351–371. (1995) Zbl0830.47032MR1348505
  3. Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential Integral Equations (1995), 465–486. (1995) MR1306569
  4. 10.1007/PL00008739, Probab. Theory Relat. Fields 118 (2000), 131–145. (2000) MR1785456DOI10.1007/PL00008739
  5. Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. (1996) MR1417491
  6. Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718, Springer-Verlag, Berlin, 1999. (1999) MR1734956
  7. 10.1006/jdeq.2000.3918, J. Differential Equations 173 (2001), 17–39. (2001) MR1836243DOI10.1006/jdeq.2000.3918
  8. Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci.  (4) 27 (1999), 69–91. (1999) MR1658889
  9. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992. (1992) MR1214375
  10. π -semigroups and applications. Preprint No.  9 of the Scuola Normale Superiore di Pisa, 1998. (1998) 

NotesEmbed ?

top

You must be logged in to post comments.