Some results about dissipativity of Kolmogorov operators
Giuseppe Da Prato; Luciano Tubaro
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 4, page 685-699
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPrato, Giuseppe Da, and Tubaro, Luciano. "Some results about dissipativity of Kolmogorov operators." Czechoslovak Mathematical Journal 51.4 (2001): 685-699. <http://eudml.org/doc/30665>.
@article{Prato2001,
abstract = {Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.},
author = {Prato, Giuseppe Da, Tubaro, Luciano},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity},
language = {eng},
number = {4},
pages = {685-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results about dissipativity of Kolmogorov operators},
url = {http://eudml.org/doc/30665},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Prato, Giuseppe Da
AU - Tubaro, Luciano
TI - Some results about dissipativity of Kolmogorov operators
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 685
EP - 699
AB - Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
LA - eng
KW - Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity
UR - http://eudml.org/doc/30665
ER -
References
top- 10.1007/BF02573496, Semigroup Forum 49 (1994), 349–367. (1994) Zbl0817.47048MR1293091DOI10.1007/BF02573496
- Weakly continuous semigroups in the space of functions with polynomial growth, Dynam. Systems Appl. 4 (1995), 351–371. (1995) Zbl0830.47032MR1348505
- Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential Integral Equations (1995), 465–486. (1995) MR1306569
- 10.1007/PL00008739, Probab. Theory Relat. Fields 118 (2000), 131–145. (2000) MR1785456DOI10.1007/PL00008739
- Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. (1996) MR1417491
- Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718, Springer-Verlag, Berlin, 1999. (1999) MR1734956
- 10.1006/jdeq.2000.3918, J. Differential Equations 173 (2001), 17–39. (2001) MR1836243DOI10.1006/jdeq.2000.3918
- Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1999), 69–91. (1999) MR1658889
- Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992. (1992) MR1214375
- -semigroups and applications. Preprint No. 9 of the Scuola Normale Superiore di Pisa, 1998. (1998)
Citations in EuDML Documents
top- Giuseppe Da Prato, Arnaud Debussche, Luciano Tubaro, Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
- Viorel Barbu, Giuseppe Da Prato, Arnaud Debussche, Essential m-dissipativity of Kolmogorov operators corresponding to periodic -Navier Stokes equations
- Giuseppe Da Prato, Luciano Tubaro, The Martingale Problem in Hilbert Spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.