Some results about dissipativity of Kolmogorov operators

Giuseppe Da Prato; Luciano Tubaro

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 4, page 685-699
  • ISSN: 0011-4642

Abstract

top
Given a Hilbert space H with a Borel probability measure ν , we prove the m -dissipativity in L 1 ( H , ν ) of a Kolmogorov operator K that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.

How to cite

top

Prato, Giuseppe Da, and Tubaro, Luciano. "Some results about dissipativity of Kolmogorov operators." Czechoslovak Mathematical Journal 51.4 (2001): 685-699. <http://eudml.org/doc/30665>.

@article{Prato2001,
abstract = {Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.},
author = {Prato, Giuseppe Da, Tubaro, Luciano},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity},
language = {eng},
number = {4},
pages = {685-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results about dissipativity of Kolmogorov operators},
url = {http://eudml.org/doc/30665},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Prato, Giuseppe Da
AU - Tubaro, Luciano
TI - Some results about dissipativity of Kolmogorov operators
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 685
EP - 699
AB - Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
LA - eng
KW - Kolmogorov equations; invatiant measures; $m$-dissipativity; Kolmogorov equations; invatiant measures; -dissipativity
UR - http://eudml.org/doc/30665
ER -

References

top
  1. 10.1007/BF02573496, Semigroup Forum 49 (1994), 349–367. (1994) Zbl0817.47048MR1293091DOI10.1007/BF02573496
  2. Weakly continuous semigroups in the space of functions with polynomial growth, Dynam. Systems Appl. 4 (1995), 351–371. (1995) Zbl0830.47032MR1348505
  3. Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential Integral Equations (1995), 465–486. (1995) MR1306569
  4. 10.1007/PL00008739, Probab. Theory Relat. Fields 118 (2000), 131–145. (2000) MR1785456DOI10.1007/PL00008739
  5. Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. (1996) MR1417491
  6. Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718, Springer-Verlag, Berlin, 1999. (1999) MR1734956
  7. 10.1006/jdeq.2000.3918, J. Differential Equations 173 (2001), 17–39. (2001) MR1836243DOI10.1006/jdeq.2000.3918
  8. Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci.  (4) 27 (1999), 69–91. (1999) MR1658889
  9. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992. (1992) MR1214375
  10. π -semigroups and applications. Preprint No.  9 of the Scuola Normale Superiore di Pisa, 1998. (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.