A decay estimate for a class of hyperbolic pseudo-differential equations
Sandra Lucente; Guido Ziliotti
- Volume: 10, Issue: 3, page 173-190
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLucente, Sandra, and Ziliotti, Guido. "A decay estimate for a class of hyperbolic pseudo-differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.3 (1999): 173-190. <http://eudml.org/doc/252442>.
@article{Lucente1999,
abstract = {We consider the equation \( u\_\{t\} − i \Lambda u = 0 \), where \( \Lambda = \lambda(D\_\{x\}) \) is a first order pseudo-differential operator with real symbol \( \lambda (\xi) \). Under a suitable convexity assumption on \( \lambda \) we find the decay properties for \( u(t,x) \). These can be applied to the linear Maxwell system in anisotropic media and to the nonlinear Cauchy Problem \( u\_\{t\} − i \Lambda u = f (u) \), \( u(0,x) = g(x) \). If \( f(u) \) is a smooth function which satisfies \( f(u) \simeq |u|^\{p\} \) near \( u = 0 \), and \( g \) is small in suitably Sobolev norm, we prove global existence theorems provided \( p \) is greater than a critical exponent.},
author = {Lucente, Sandra, Ziliotti, Guido},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Decay estimate; Nonlinear hyperbolic equations; Small data; decay estimate; nonlinear hyperbolic equation; small data; Maxwell system in anisotropic media; nonlinear Cauchy problem},
language = {eng},
month = {9},
number = {3},
pages = {173-190},
publisher = {Accademia Nazionale dei Lincei},
title = {A decay estimate for a class of hyperbolic pseudo-differential equations},
url = {http://eudml.org/doc/252442},
volume = {10},
year = {1999},
}
TY - JOUR
AU - Lucente, Sandra
AU - Ziliotti, Guido
TI - A decay estimate for a class of hyperbolic pseudo-differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/9//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 3
SP - 173
EP - 190
AB - We consider the equation \( u_{t} − i \Lambda u = 0 \), where \( \Lambda = \lambda(D_{x}) \) is a first order pseudo-differential operator with real symbol \( \lambda (\xi) \). Under a suitable convexity assumption on \( \lambda \) we find the decay properties for \( u(t,x) \). These can be applied to the linear Maxwell system in anisotropic media and to the nonlinear Cauchy Problem \( u_{t} − i \Lambda u = f (u) \), \( u(0,x) = g(x) \). If \( f(u) \) is a smooth function which satisfies \( f(u) \simeq |u|^{p} \) near \( u = 0 \), and \( g \) is small in suitably Sobolev norm, we prove global existence theorems provided \( p \) is greater than a critical exponent.
LA - eng
KW - Decay estimate; Nonlinear hyperbolic equations; Small data; decay estimate; nonlinear hyperbolic equation; small data; Maxwell system in anisotropic media; nonlinear Cauchy problem
UR - http://eudml.org/doc/252442
ER -
References
top- Courant, R. - Hilbert, D., Methods of mathematical physics. Vol. II: Partial differential equations. Wiley & Sons Interscience Publishers, New York1989. Zbl0729.35001MR1013360
- D’Ancona, P. - Spagnolo, S., Nonlinear perturbations of the Kirchhoff equation. Comm. Pure Appl. Math., 47, 1993, 1005-1029. Zbl0807.35093MR1283880DOI10.1002/cpa.3160470705
- Federer, H., Geometric measure theory. Springer-Verlag, Berlin - Heidelberg - New York1969. Zbl0874.49001MR257325
- Lax, P. - Philips, R., Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math., 13, 1960, 427-455. Zbl0094.07502MR118949
- Lifšits, E. M. - Lev Pitaevskij, P., Elettrodinamica dei mezzi continui. Editori Riuniti, Edizioni MIR, Roma1986.
- Racke, R., Lectures on nonlinear evolution equations: initial value problems. Aspects of Mathematics, 19, Vieweg1992. Zbl0811.35002MR1158463
- Runst, T. - Sickel, W., Sobolev spaces of fractional order, Nemitskij operators, and nonlinear partial differential equation. Walther de Gruyter, Berlin1978. Zbl0873.35001MR1419319DOI10.1515/9783110812411
- Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton1993. Zbl0821.42001MR1232192
- Strauss, W., Nonlinear wave equations. CBMS Series, 73, Amer. Math. Soc., Providence, Rhode Island1989. Zbl0714.35003MR1032250
- Taylor, M. E., Pseudodifferential operators and nonlinear PDE. Progress in Mathematics, 100, Birkhäuser1991. Zbl0746.35062MR1121019DOI10.1007/978-1-4612-0431-2
- Von Wahl, W., decay rates for homogeneous wave equation. Math. Z., 120, 1971, 93-106. Zbl0212.44201MR280885
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.