Teoremi di esistenza globale per equazioni semilineari di tipo onda

Sandra Lucente

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-A, Issue: 3, page 363-366
  • ISSN: 0392-4041

How to cite

top

Lucente, Sandra. "Teoremi di esistenza globale per equazioni semilineari di tipo onda." Bollettino dell'Unione Matematica Italiana 3-A.3 (2000): 363-366. <http://eudml.org/doc/260872>.

@article{Lucente2000,
abstract = {},
author = {Lucente, Sandra},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {363-366},
publisher = {Unione Matematica Italiana},
title = {Teoremi di esistenza globale per equazioni semilineari di tipo onda},
url = {http://eudml.org/doc/260872},
volume = {3-A},
year = {2000},
}

TY - JOUR
AU - Lucente, Sandra
TI - Teoremi di esistenza globale per equazioni semilineari di tipo onda
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/12//
PB - Unione Matematica Italiana
VL - 3-A
IS - 3
SP - 363
EP - 366
AB -
LA - ita
UR - http://eudml.org/doc/260872
ER -

References

top
  1. CHOQUET-BRUHAT, Y., CHRISTODOULOU, D., Elliptic Systems in H s , δ Spaces on Manifold which are Euclidean at Infinity, Acta Math., 146(1981), 129-150. Zbl0484.58028MR594629DOI10.1007/BF02392460
  2. D’ANCONA, P., GEORGIEV, V., KUBO, H., L q Weighted Decay Estimate for Wave Equation, preprint Dipartimento di Matematica, Università di Roma «La Sapienza». MR1867616DOI10.1006/jdeq.2000.3983
  3. GEORGIEV, V., LUCENTE, S., Weighted Sobolev Spaces applied to Nonlinear Klein-Gordon Equation, C. R. Acad. Sci. Paris Sér. I Math., 329(1999), 21-26. Zbl0930.35109MR1703291DOI10.1016/S0764-4442(99)80454-6
  4. HÖRMANDER, L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathematiques et Applications, 26, Springer, Berlin(1997) Zbl0881.35001MR1466700
  5. LUCENTE, S., Nonlinear Wave Equation with Vanishing Potential, Serdica Math. J., 25(1999), 71-82. Zbl0937.35102MR1710715
  6. LUCENTE, S., Nonlinear Wave Equation with Potential, in corso di stampa su Tsukuba J. Math. Zbl0979.35103MR1791332
  7. LUCENTE, S., ZILIOTTI, G., A decay estimate for a class of hyperbolic pseudo-differential equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 10(1999. Zbl1009.35092MR1769160
  8. RAUCH, J., The u 5 Klein-Gordon Equations, Non linear PDE’s and Applications, Pitman Research Notes in Math., 53(1981), 335-364. Zbl0473.35055MR631403
  9. SHATAH, J., STRUWE, M., Regularity Result for Nonlinear Wave Equation, Ann. Math., 138(1993), 503-518. Zbl0836.35096MR1247991DOI10.2307/2946554
  10. TRIEBEL, H., Interpolation Theory, Function Spaces, Differential Operators, North Holland Co., Amsterdam (1978). Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.