Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
Franco Brezzi; Thomas J. R. Hughes; Endre Süli
- Volume: 12, Issue: 3, page 159-166
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBrezzi, Franco, Hughes, Thomas J. R., and Süli, Endre. "Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.3 (2001): 159-166. <http://eudml.org/doc/252443>.
@article{Brezzi2001,
abstract = {We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.},
author = {Brezzi, Franco, Hughes, Thomas J. R., Süli, Endre},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Finite element methods; Conservation; Error estimates; Flux functionals; finite element methods; conservation; error estimates; flux functionals},
language = {eng},
month = {9},
number = {3},
pages = {159-166},
publisher = {Accademia Nazionale dei Lincei},
title = {Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem},
url = {http://eudml.org/doc/252443},
volume = {12},
year = {2001},
}
TY - JOUR
AU - Brezzi, Franco
AU - Hughes, Thomas J. R.
AU - Süli, Endre
TI - Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/9//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 3
SP - 159
EP - 166
AB - We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.
LA - eng
KW - Finite element methods; Conservation; Error estimates; Flux functionals; finite element methods; conservation; error estimates; flux functionals
UR - http://eudml.org/doc/252443
ER -
References
top- Babuška, I. - Miller, A., The post processing approach in the finite element method, part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Internat. J. Numer. Methods. Engrg., 34, 1984, 1085-1109. Zbl0535.73052
- Babuška, I. - Miller, A., The post processing approach in the finite element method, part 2: the calculation of stress intensity factors. Internat. J. Numer. Methods. Engrg., 34, 1984, 1111-1129. Zbl0535.73053
- Babuška, I. - Miller, A., The post processing approach in the finite element method, part 3: a posteriori estimates and adaptive mesh selection. Internat. J. Numer. Methods. Engrg., 34, 1984, 1131-1151. Zbl0555.73072
- Babuška, I. - Suri, M., The and versions of the finite element method, basic principles and properties. SIAM Review, 36(4), 1994, 578-632. Zbl0813.65118MR1306924DOI10.1137/1036141
- Barrett, J.W. - Elliott, C.M., Total flux estimates for a finite element approximation of elliptic equations. IMA J. Numer. Anal., 7, 1987, 129-148. Zbl0619.65098MR968084DOI10.1093/imanum/7.2.129
- Bramble, J.H. - Schatz, A.H., Higher order local accuracy by averaging in the finite element method. Mathematics of Computation, 31, 1977, 94-111. Zbl0353.65064MR431744
- Ciarlet, Ph.G., The finite element methods for elliptic problems. North Holland, Amsterdam1978. Zbl0511.65078MR1115235
- Cockburn, B. - Luskin, M. - Shu, C.-W. - Süli, E., Postprocessing of the discontinuous Galerkin finite element method. In: B. Cockburn - G. Karniadakis - C.-W. Shu (eds.), Discontinuous Galerkin Finite Element Methods. Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, 2000; extended version submitted to Mathematics of Computation, 2000. MR1842161DOI10.1007/978-3-642-59721-3_1
- Giles, M.B. - Larson, M.G. - Levenstam, M. - Süli, E., Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Technical Report NA-97/06, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, 1997.
- Hughes, T.J.R. - Engel, G. - Mazzei, L. - Larson, M.G., The Continuous Galerkin Method is Locally Conservative. Journal of Computational Physics, 163, 2000, 467-488. Zbl0969.65104MR1783558DOI10.1006/jcph.2000.6577
- Lions, J.L. - Magenes, E., Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris1968. Zbl0165.10801
- Marini, L.D. - Quarteroni, A., A relaxation procedure for domain decomposition methods using finite elements. Numer. Math., 55, 1989, 575-598. Zbl0661.65111MR998911DOI10.1007/BF01398917
- Wahlbin, L.B., Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, 1605, Springer-Verlag, 1977. Zbl0826.65092MR1439050
- Wheeler, J.A., Simulation of heat transfer from a warm pipeline buried in permafrost. Proceedings of the 74th National meeting of the American Institute of Chemical Engineering, 1973.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.