Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem

Franco Brezzi; Thomas J. R. Hughes; Endre Süli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 3, page 159-166
  • ISSN: 1120-6330

Abstract

top
We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.

How to cite

top

Brezzi, Franco, Hughes, Thomas J. R., and Süli, Endre. "Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.3 (2001): 159-166. <http://eudml.org/doc/252443>.

@article{Brezzi2001,
abstract = {We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.},
author = {Brezzi, Franco, Hughes, Thomas J. R., Süli, Endre},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Finite element methods; Conservation; Error estimates; Flux functionals; finite element methods; conservation; error estimates; flux functionals},
language = {eng},
month = {9},
number = {3},
pages = {159-166},
publisher = {Accademia Nazionale dei Lincei},
title = {Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem},
url = {http://eudml.org/doc/252443},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Brezzi, Franco
AU - Hughes, Thomas J. R.
AU - Süli, Endre
TI - Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/9//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 3
SP - 159
EP - 166
AB - We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.
LA - eng
KW - Finite element methods; Conservation; Error estimates; Flux functionals; finite element methods; conservation; error estimates; flux functionals
UR - http://eudml.org/doc/252443
ER -

References

top
  1. Babuška, I. - Miller, A., The post processing approach in the finite element method, part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Internat. J. Numer. Methods. Engrg., 34, 1984, 1085-1109. Zbl0535.73052
  2. Babuška, I. - Miller, A., The post processing approach in the finite element method, part 2: the calculation of stress intensity factors. Internat. J. Numer. Methods. Engrg., 34, 1984, 1111-1129. Zbl0535.73053
  3. Babuška, I. - Miller, A., The post processing approach in the finite element method, part 3: a posteriori estimates and adaptive mesh selection. Internat. J. Numer. Methods. Engrg., 34, 1984, 1131-1151. Zbl0555.73072
  4. Babuška, I. - Suri, M., The p and h - p versions of the finite element method, basic principles and properties. SIAM Review, 36(4), 1994, 578-632. Zbl0813.65118MR1306924DOI10.1137/1036141
  5. Barrett, J.W. - Elliott, C.M., Total flux estimates for a finite element approximation of elliptic equations. IMA J. Numer. Anal., 7, 1987, 129-148. Zbl0619.65098MR968084DOI10.1093/imanum/7.2.129
  6. Bramble, J.H. - Schatz, A.H., Higher order local accuracy by averaging in the finite element method. Mathematics of Computation, 31, 1977, 94-111. Zbl0353.65064MR431744
  7. Ciarlet, Ph.G., The finite element methods for elliptic problems. North Holland, Amsterdam1978. Zbl0511.65078MR1115235
  8. Cockburn, B. - Luskin, M. - Shu, C.-W. - Süli, E., Postprocessing of the discontinuous Galerkin finite element method. In: B. Cockburn - G. Karniadakis - C.-W. Shu (eds.), Discontinuous Galerkin Finite Element Methods. Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, 2000; extended version submitted to Mathematics of Computation, 2000. MR1842161DOI10.1007/978-3-642-59721-3_1
  9. Giles, M.B. - Larson, M.G. - Levenstam, M. - Süli, E., Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Technical Report NA-97/06, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, 1997. 
  10. Hughes, T.J.R. - Engel, G. - Mazzei, L. - Larson, M.G., The Continuous Galerkin Method is Locally Conservative. Journal of Computational Physics, 163, 2000, 467-488. Zbl0969.65104MR1783558DOI10.1006/jcph.2000.6577
  11. Lions, J.L. - Magenes, E., Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris1968. Zbl0165.10801
  12. Marini, L.D. - Quarteroni, A., A relaxation procedure for domain decomposition methods using finite elements. Numer. Math., 55, 1989, 575-598. Zbl0661.65111MR998911DOI10.1007/BF01398917
  13. Wahlbin, L.B., Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, 1605, Springer-Verlag, 1977. Zbl0826.65092MR1439050
  14. Wheeler, J.A., Simulation of heat transfer from a warm pipeline buried in permafrost. Proceedings of the 74th National meeting of the American Institute of Chemical Engineering, 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.