A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements.
Numerische Mathematik (1987)
- Volume: 55, Issue: 5, page 575-598
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topQuarteroni, A., and Marini, L.D.. "A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements.." Numerische Mathematik 55.5 (1987): 575-598. <http://eudml.org/doc/133372>.
@article{Quarteroni1987,
author = {Quarteroni, A., Marini, L.D.},
journal = {Numerische Mathematik},
keywords = {convergence; domain decomposition; finite element; computational complexity; relaxation parameter; incompressible Stokes equations},
number = {5},
pages = {575-598},
title = {A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements.},
url = {http://eudml.org/doc/133372},
volume = {55},
year = {1987},
}
TY - JOUR
AU - Quarteroni, A.
AU - Marini, L.D.
TI - A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements.
JO - Numerische Mathematik
PY - 1987
VL - 55
IS - 5
SP - 575
EP - 598
KW - convergence; domain decomposition; finite element; computational complexity; relaxation parameter; incompressible Stokes equations
UR - http://eudml.org/doc/133372
ER -
Citations in EuDML Documents
top- Hani Benhassine, Abderrahmane Bendali, A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem
- Xuejun Xu, C. O. Chow, S. H. Lui, On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations
- Franco Brezzi, Thomas J. R. Hughes, Endre Süli, Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
- Milan Práger, An iterative method of alternating type for systems with special block matrices
- Hani Benhassine, Abderrahmane Bendali, A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem
- Xuejun Xu, C. O. Chow, S. H. Lui, On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations
- Guillaume Bal, Yvon Maday, Coupling of transport and diffusion models in linear transport theory
- Milan Práger, Algebraic approach to domain decomposition
- Guillaume Bal, Yvon Maday, Coupling of transport and diffusion models in linear transport theory
- Lynn Schreyer Bennethum, Xiaobing Feng, A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.