Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 191-204
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSamodivkin, Vladimir D.. "Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces." Czechoslovak Mathematical Journal 63.1 (2013): 191-204. <http://eudml.org/doc/252457>.
@article{Samodivkin2013,
abstract = {For a graph property $\mathcal \{P\}$ and a graph $G$, we define the domination subdivision number with respect to the property $\mathcal \{P\}$ to be the minimum number of edges that must be subdivided (where each edge in $G$ can be subdivided at most once) in order to change the domination number with respect to the property $\mathcal \{P\}$. In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination subdivision number, bondage number with respect to an induced-hereditary property, and Roman bondage number of a graph on topological surfaces.},
author = {Samodivkin, Vladimir D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {domination subdivision number; graph property; bondage number; Roman bondage number; induced-hereditary property; orientable genus; non-orientable genus; domination subdivision number; graph property; bondage number; Roman bondage number; induced-hereditary property; orientable genus; non-orientable genus},
language = {eng},
number = {1},
pages = {191-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces},
url = {http://eudml.org/doc/252457},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Samodivkin, Vladimir D.
TI - Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 191
EP - 204
AB - For a graph property $\mathcal {P}$ and a graph $G$, we define the domination subdivision number with respect to the property $\mathcal {P}$ to be the minimum number of edges that must be subdivided (where each edge in $G$ can be subdivided at most once) in order to change the domination number with respect to the property $\mathcal {P}$. In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination subdivision number, bondage number with respect to an induced-hereditary property, and Roman bondage number of a graph on topological surfaces.
LA - eng
KW - domination subdivision number; graph property; bondage number; Roman bondage number; induced-hereditary property; orientable genus; non-orientable genus; domination subdivision number; graph property; bondage number; Roman bondage number; induced-hereditary property; orientable genus; non-orientable genus
UR - http://eudml.org/doc/252457
ER -
References
top- Altshuler, A., 10.1016/S0012-365X(73)80002-0, Discrete Math. 4 (1973), 201-217. (1973) Zbl0253.05117MR0321797DOI10.1016/S0012-365X(73)80002-0
- Carlson, K., Develin, M., 10.1016/j.disc.2006.02.008, Discrete Math. 306 (2006), 820-826. (2006) Zbl1122.05045MR2234988DOI10.1016/j.disc.2006.02.008
- Favaron, O., Haynes, T. W., Hedetniemi, S. T., Domination subdivision numbers in graphs, Util. Math. 66 (2004), 195-209. (2004) Zbl1071.05057MR2106218
- Favaron, O., Karami, H., Sheikholeslami, S. M., Connected domination subdivision numbers of graphs, Util. Math. 77 (2008), 101-111. (2008) Zbl1161.05055MR2462631
- Favaron, O., Karami, H., Sheikholeslami, S. M., 10.1007/s00373-005-0871-1, Graphs Comb. 25 (2009), 503-512. (2009) Zbl1216.05102MR2575597DOI10.1007/s00373-005-0871-1
- Gagarin, A., Zverovich, V., Upper bounds for the bondage number of graphs on topological surfaces, Discrete Math. (2011), 10.1016/j.disc 2011.10.018. (2011) MR3034744
- Goddard, W., Haynes, T., Knisley, D., 10.7151/dmgt.1228, Discuss. Math., Graph Theory. 24 (2004), 239-248. (2004) Zbl1065.05069MR2120566DOI10.7151/dmgt.1228
- Haynes, T. W., Hedetniemi, S. T., Merwe, L. C. van der, Total domination subdivision numbers, J. Comb. Math. Comb. Comput. 44 (2003), 115-128. (2003) MR1962340
- Haynes, T. W., Henning, M. A., Hopkins, L. S., 10.7151/dmgt.1244, Discuss. Math., Graph Theory 24 (2004), 457-467. (2004) Zbl1065.05070MR2120069DOI10.7151/dmgt.1244
- Ivančo, J., 10.1016/S0167-5060(08)70614-9, Combinatorics, Graphs and Complexity, Proc. 4th Czech. Symp., Prachatice/Czech. 1990, Ann. Discrete Math 51 (1992), 113-116. (1992) Zbl0773.05066MR1206252DOI10.1016/S0167-5060(08)70614-9
- Rad, N. Jafari, Volkmann, L., Roman bondage in graphs, Discuss. Math., Graph Theory 31 (2011), 753-761. (2011) MR2952241
- Rad, N. Jafari, Volkmann, L., 10.1007/s00373-010-0978-x, Graphs Comb. 27 (2011), 531-538. (2011) MR2813452DOI10.1007/s00373-010-0978-x
- Jendrol', S., Tuhársky, M., A Kotzig type theorem for non-orientable surfaces, Math. Slovaca 56 (2006), 245-253. (2006) Zbl1141.05028MR2250077
- Kang, L., Yuan, J., 10.1016/S0012-365X(99)00405-7, Discrete Math. 222 (2000), 191-198. (2000) Zbl0961.05055MR1771398DOI10.1016/S0012-365X(99)00405-7
- Michalak, D., 10.1016/j.disc.2003.11.054, Discrete Math. 286 (2004), 141-146. (2004) MR2084289DOI10.1016/j.disc.2003.11.054
- Nakamoto, A., Negami, S., Full-symmetric embeddings of graphs on closed surfaces, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 49 (2000), 1-15. (2000) MR1833214
- Negami, S., Classification of 6-regular Klein-bottlal graphs, Res. Rep. Inf. Sci. T.I.T. A-96 (1984). (1984)
- Parsons, T. D., Pica, G., Pisanski, T., Ventre, A. G. S., Orientably simple graphs, Math. Slovaca 37 (1987), 391-394. (1987) Zbl0643.05027MR0916947
- ReVelle, C. S., Rosing, K. E., 10.2307/2589113, Am. Math. Mon. 107 (2000), 585-594. (2000) Zbl1039.90038MR1786232DOI10.2307/2589113
- Samodivkin, V., Domination with respect to nondegenerate and hereditary properties, Math. Bohem. 133 (2008), 167-178. (2008) Zbl1199.05269MR2428312
- Samodivkin, V., Domination with respect to nondegenerate properties: bondage number, Australas. J. Comb. 45 (2009), 217-226. (2009) Zbl1207.05145MR2554536
- Stewart, I., 10.1038/scientificamerican1299-136, Sci. Amer. 281 (1999), 136-139. (1999) DOI10.1038/scientificamerican1299-136
- Teschner, U., A new upper bound for the bondage number of graphs with small domination number, Australas. J. Comb. 12 (1995), 27-35. (1995) Zbl0839.05053MR1349195
- Thomassen, C., 10.2307/2324180, Am. Math. Mon. 99 (1992), 116-130. (1992) Zbl0773.57001MR1144352DOI10.2307/2324180
- Velammal, S., Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (1997). (1997)
- Youngs, J. W. T., Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963), 303-315 English. Russian original translation from Kibernet. Sb., N. Ser. 7, (1970), 145-159. (1970) Zbl0213.26001MR0145512
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.