A Kotzig type theorem for non-orientable surfaces

Stanislav Jendroľ; Milan Tuhársky

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 3, page 245-253
  • ISSN: 0139-9918

How to cite


Jendroľ, Stanislav, and Tuhársky, Milan. "A Kotzig type theorem for non-orientable surfaces." Mathematica Slovaca 56.3 (2006): 245-253. <http://eudml.org/doc/32111>.

author = {Jendroľ, Stanislav, Tuhársky, Milan},
journal = {Mathematica Slovaca},
keywords = {embedding of a graph; Kotzig type theorem; non-orientable genus; weight of edge},
language = {eng},
number = {3},
pages = {245-253},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A Kotzig type theorem for non-orientable surfaces},
url = {http://eudml.org/doc/32111},
volume = {56},
year = {2006},

AU - Jendroľ, Stanislav
AU - Tuhársky, Milan
TI - A Kotzig type theorem for non-orientable surfaces
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 3
SP - 245
EP - 253
LA - eng
KW - embedding of a graph; Kotzig type theorem; non-orientable genus; weight of edge
UR - http://eudml.org/doc/32111
ER -


  1. IVANČO J., The weight of a graph, Ann. Discrete Math. 51 (1992), 113-116. (1992) Zbl0773.05066MR1206252
  2. JENDROL' S.-VOSS H.-J., Light subgraphs of graphs embedded in 2 -dimensional manifolds of Euler characteristic < 0 - a survey, In: P. Erdos and his Mathematics II. (G. Halasz, L. Lovasz, M. Simonovits, V. T. Sos, eds.), Bolyai Soc. Math. Stud. 11, Springer, Budapest, 2002, pp. 375-411. MR1954735
  3. JENDROL' S.-VOSS H.-J., A local property of large polyhedral maps on compact 2 -dimensional manifolds, Graphs Combin. 15 (1999), 303-313. (1999) Zbl0933.05044MR1723014
  4. KOTZIG A., A contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Časopis SAV (Math. Slovaca) 5 (1955), 101-113. (Slovak, Russian summary) (1955) MR0074837
  5. MOHAR B.-THOMASSEN C., Graphs on Surfaces, The Johns Hopkins University Press, Baltimore-London, 2001. Zbl1230.05133MR1844449
  6. RINGEL G., Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965), 89-93. (1965) Zbl0132.21204MR0182963
  7. RINGEL G., Map Color Theorem, Springer-Verlag, Berlin, 1974. (1974) Zbl0287.05102MR0349461
  8. THOMASSEN C., Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991), 605-635. (1991) Zbl0722.05031MR1040045
  9. ZAKS J., Extending Kotzig's Theorem, Israel J. Math. 45 (1983), 281-296. (1983) Zbl0524.05031MR0720304

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.