Lonely points revisited

Jonathan L. Verner

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 1, page 105-110
  • ISSN: 0010-2628

Abstract

top
In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point p X is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space 𝒢 ω from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in ω * . This answers the question of P. Simon posed in our paper Lonely points in ω * , Topology Appl. 155 (2008), no. 16, 1766–1771.

How to cite

top

Verner, Jonathan L.. "Lonely points revisited." Commentationes Mathematicae Universitatis Carolinae 54.1 (2013): 105-110. <http://eudml.org/doc/252469>.

@article{Verner2013,
abstract = {In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space $\{\mathcal \{G\}\}_\omega $ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in $\omega ^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega ^*$, Topology Appl. 155 (2008), no. 16, 1766–1771.},
author = {Verner, Jonathan L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\beta \omega $; lonely point; weak P-point; irresolvable spaces; ; lonely point; weak P-point; irresolvable spaces},
language = {eng},
number = {1},
pages = {105-110},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lonely points revisited},
url = {http://eudml.org/doc/252469},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Verner, Jonathan L.
TI - Lonely points revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 1
SP - 105
EP - 110
AB - In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal {G}}_\omega $ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in $\omega ^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega ^*$, Topology Appl. 155 (2008), no. 16, 1766–1771.
LA - eng
KW - $\beta \omega $; lonely point; weak P-point; irresolvable spaces; ; lonely point; weak P-point; irresolvable spaces
UR - http://eudml.org/doc/252469
ER -

References

top
  1. van Douwen E.K., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125–139. Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
  2. Dow A., Gubbi A.V., Szymański A., Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748. MR0929014
  3. Engelking R., General Topology, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  4. Frolík Z., Nonhomogeneity of β P - P , Comment. Math. Univ. Carolin. 8 (1967), 705–709. MR0266160
  5. Frolík Z., 10.1090/S0002-9904-1967-11653-7, Bull. Amer. Math. Soc. 73 (1967), 87–91. Zbl0166.18602MR0203676DOI10.1090/S0002-9904-1967-11653-7
  6. Hewitt E., 10.1215/S0012-7094-43-01029-4, Duke Math. J. 10 (19430), 309–333. Zbl0060.39407MR0008692DOI10.1215/S0012-7094-43-01029-4
  7. Katětov M., On topological spaces containing no disjoint dense subsets, Mat. Sbornik N.S. 21(63) (1947), 3–12. MR0021679
  8. Kunen K., Weak P -points in N * , Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749. Zbl0435.54021MR0588822
  9. van Mill J., Sixteen types in β ω - ω , Topology Appl. 13 (1982), 43–57. MR0637426
  10. Rudin W., 10.1215/S0012-7094-56-02337-7, Duke Math. J. 23 (1956), 409–419. Zbl0073.39602MR0080902DOI10.1215/S0012-7094-56-02337-7
  11. Simon P., Applications of independent linked families, Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, pp. 561–580. Zbl0615.54004MR0863940
  12. Verner J., 10.1016/j.topol.2008.05.020, Topology Appl. 155 (2008), no. 16, 1766–1771. Zbl1152.54021MR2445298DOI10.1016/j.topol.2008.05.020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.