The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Lonely points revisited”

Weak orderability of some spaces which admit a weak selection

Camillo Costantini (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that if a Hausdorff topological space X satisfies one of the following properties: a) X has a countable, discrete dense subset and X 2 is hereditarily collectionwise Hausdorff; b) X has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on X implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.

Functional separability

Ronnie Levy, M. Matveev (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples...

The regular topology on C ( X )

Wolf Iberkleid, Ramiro Lafuente-Rodriguez, Warren Wm. McGovern (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Hewitt [Rings of real-valued continuous functions. I., Trans. Amer. Math. Soc. 64 (1948), 45–99] defined the m -topology on C ( X ) , denoted C m ( X ) , and demonstrated that certain topological properties of X could be characterized by certain topological properties of C m ( X ) . For example, he showed that X is pseudocompact if and only if C m ( X ) is a metrizable space; in this case the m -topology is precisely the topology of uniform convergence. What is interesting with regards to the m -topology is that it is...