On a variational approach to truncated problems of moments
Mathematica Bohemica (2013)
- Volume: 138, Issue: 1, page 105-112
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAmbrozie, C.-G.. "On a variational approach to truncated problems of moments." Mathematica Bohemica 138.1 (2013): 105-112. <http://eudml.org/doc/252472>.
@article{Ambrozie2013,
abstract = {We characterize the existence of the $L^1$ solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.},
author = {Ambrozie, C.-G.},
journal = {Mathematica Bohemica},
keywords = {problem of moments; representing measure; moment problem; representing measure; Lagrangian},
language = {eng},
number = {1},
pages = {105-112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a variational approach to truncated problems of moments},
url = {http://eudml.org/doc/252472},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Ambrozie, C.-G.
TI - On a variational approach to truncated problems of moments
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 1
SP - 105
EP - 112
AB - We characterize the existence of the $L^1$ solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.
LA - eng
KW - problem of moments; representing measure; moment problem; representing measure; Lagrangian
UR - http://eudml.org/doc/252472
ER -
References
top- Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Univ. Math. Monographs. Oliver & Boyd, Edinburgh (1965) (English translation). Zbl0135.33803MR0184042
- Ambrozie, C.-G., 10.14321/realanalexch.29.2.0607, Real Anal. Exchange 29 (2003/04), 607-627. (2003) MR2083800DOI10.14321/realanalexch.29.2.0607
- Ambrozie, C.-G., Multivariate truncated moments problems and maximum entropy, arXiv:1111.7123, .
- Ambrozie, C.-G., A Riesz-Haviland type result for truncated moment problems with solutions in , arXiv:1111.6555, (to appear) in J. Operator Theory.
- Blekherman, G., Lasserre, J. B., 10.1016/j.jfa.2012.09.001, J. Funct. Anal. 263 3604-3616. MR2984077DOI10.1016/j.jfa.2012.09.001
- Borwein, J. M., 10.1080/02331934.2011.632502, Optimization 61 (2012), 1-33. (2012) Zbl1241.45009MR2875572DOI10.1080/02331934.2011.632502
- Borwein, J. M., Lewis, A. S., 10.1137/0801014, SIAM J. Optim. 1 (1991), 191-205. (1991) Zbl0756.41037MR1098426DOI10.1137/0801014
- Borwein, J. M., Lewis, A. S., 10.1137/0329017, SIAM J. Control Optimization 29 (1991), 325-338. (1991) Zbl0797.49030MR1092730DOI10.1137/0329017
- Campenhout, J. M. Van, Cover, T. M., Maximum entropy and conditional probability, IEEE Trans. Inf. Theory IT--27 (1981), 483-489. (1981) MR0635527
- Cassier, G., 10.1016/0022-1236(84)90042-9, J. Funct. Analysis 58 (1984), 254-266 French. (1984) MR0759099DOI10.1016/0022-1236(84)90042-9
- Cichoń, D., Stochel, J., Szafraniec, F. H., 10.1016/j.jmaa.2011.02.035, J. Math. Anal. Appl. 380 (2011), 94-104. (2011) Zbl1214.30020MR2786187DOI10.1016/j.jmaa.2011.02.035
- Curto, R. E., Fialkow, L. A., 10.1016/j.jfa.2008.09.003, J. Funct. Anal. 255 (2008), 2709-2731. (2008) Zbl1158.44003MR2464189DOI10.1016/j.jfa.2008.09.003
- Curto, R. E., Fialkow, L. A., Moeller, H. M., 10.1007/s00020-008-1557-x, Integral Equations Oper. Theory 60 (2008), 177-200. (2008) Zbl1145.47012MR2375563DOI10.1007/s00020-008-1557-x
- Fuglede, B., The multidimensional moment problem, Exp. Math. 1 (1983), 47-65. (1983) Zbl0514.44006MR0693807
- Haviland, E. K., 10.2307/2371187, Amer. J. Math. 57 (1935), 562-568. (1935) MR1507095DOI10.2307/2371187
- Hauck, C. D., Levermore, C. D., Tits, A. L., 10.1137/070691139, SIAM J. Control Optim. 47 (2008), 1977-2015. (2008) Zbl1167.49033MR2421338DOI10.1137/070691139
- Junk, M., 10.1142/S0218202500000513, Math. Models Methods Appl. Sci. 10 (2000), 1001-1025. (2000) Zbl1012.44005MR1780147DOI10.1142/S0218202500000513
- Kagan, A. M., Linnik, Y. V., Rao, C. R., Characterization Problems in Mathematical Statistics, Wiley, New York (1983). (1983) MR0346969
- Kuhlmann, S., Marshall, M., Schwartz, N., Positivity, sums of squares and the multi-dimensional moment problem. II, Adv. Geom. 5 (2005), 583-606. (2005) Zbl1095.14055MR2174483
- Kullback, S., Information Theory and Statistics, John Wiley, New York (1959). (1959) Zbl0088.10406MR0103557
- Lewis, A. S., 10.4153/CJM-1995-052-2, Can. J. Math. 47 (1995), 995-1006. (1995) Zbl0840.90106MR1350646DOI10.4153/CJM-1995-052-2
- Léonard, C., 10.1016/j.jmaa.2008.04.048, J. Math. Anal. Appl. 346 (2008), 183-204. (2008) Zbl1152.49039MR2428283DOI10.1016/j.jmaa.2008.04.048
- Mead, L. R., Papanicolaou, N., 10.1063/1.526446, J. Math. Phys. 25 (1984), 2404-2417. (1984) MR0751523DOI10.1063/1.526446
- Moreau, J. J., Sur la fonction polaire d'une fonction semicontinue supérieurement, C. R. Acad. Sci., Paris 258 (1964), 1128-1130 French. (1964) Zbl0144.30501MR0160093
- Putinar, M., Vasilescu, F.-H., 10.2307/121083, Ann. Math., II. Ser. 149 (1999), 1087-1107. (1999) Zbl0939.44003MR1709313DOI10.2307/121083
- Rockafellar, R. T., 10.1215/S0012-7094-66-03312-6, Duke Math. J. 33 (1966), 81-89. (1966) MR0187062DOI10.1215/S0012-7094-66-03312-6
- Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey (1970). (1970) Zbl0193.18401MR0274683
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.