Universal meager F σ -sets in locally compact manifolds

Taras O. Banakh; Dušan Repovš

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 179-188
  • ISSN: 0010-2628

Abstract

top
In each manifold M modeled on a finite or infinite dimensional cube [ 0 , 1 ] n , n ω , we construct a meager F σ -subset X M which is universal meager in the sense that for each meager subset A M there is a homeomorphism h : M M such that h ( A ) X . We also prove that any two universal meager F σ -sets in M are ambiently homeomorphic.

How to cite

top

Banakh, Taras O., and Repovš, Dušan. "Universal meager $F_\sigma $-sets in locally compact manifolds." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 179-188. <http://eudml.org/doc/252474>.

@article{Banakh2013,
abstract = {In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\le \omega $, we construct a meager $F_\sigma $-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\rightarrow M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma $-sets in $M$ are ambiently homeomorphic.},
author = {Banakh, Taras O., Repovš, Dušan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition; universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; tame ball; tame decomposition},
language = {eng},
number = {2},
pages = {179-188},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universal meager $F_\sigma $-sets in locally compact manifolds},
url = {http://eudml.org/doc/252474},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Repovš, Dušan
TI - Universal meager $F_\sigma $-sets in locally compact manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 179
EP - 188
AB - In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\le \omega $, we construct a meager $F_\sigma $-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\rightarrow M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma $-sets in $M$ are ambiently homeomorphic.
LA - eng
KW - universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition; universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; tame ball; tame decomposition
UR - http://eudml.org/doc/252474
ER -

References

top
  1. Anderson R.D., On sigma-compact subsets of infinite-dimensional manifolds, unpublished manuscript. 
  2. Banakh T., Morayne M., Rałowski R., Żeberski S., Topologically invariant σ -ideals on the Hilbert cube, preprint (http://arxiv.org/abs/1302.5658). 
  3. Banakh T., Repovš D., Universal nowhere dense subsets of locally compact manifolds, preprint (http://arxiv.org/abs/1302.5651). 
  4. Bessaga C., Pelczyński A., Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975. Zbl0304.57001MR0478168
  5. Cannon J.W., A positional characterization of the ( n - 1 ) -dimensional Sierpinski curve in S n ( n 4 ) , Fund. Math. 79 (1973), no. 2, 107–112. MR0319203
  6. Chapman T.A., 10.1090/S0002-9947-1971-0283828-7, Trans. Amer. Math. Soc. 154 (1971), 399–426. Zbl0208.51903MR0283828DOI10.1090/S0002-9947-1971-0283828-7
  7. Chapman T.A., Lectures on Hilbert Cube Manifolds, American Mathematical Society, Providence, R.I., 1976. Zbl0528.57002MR0423357
  8. Chigogidze A., Inverse Spectra, North-Holland Publishing Co., Amsterdam, 1996. Zbl0934.54001MR1406565
  9. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  10. Engelking R., Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
  11. Geoghegan R., Summerhill R., 10.1090/S0002-9904-1972-13086-6, Bull. Amer. Math. Soc. 78 (1972), 1009–1014. Zbl0256.57004MR0312501DOI10.1090/S0002-9904-1972-13086-6
  12. Geoghegan R., Summerhill R., 10.1090/S0002-9947-1974-0356061-0, Trans. Amer. Math. Soc. 194 (1974), 141–165. Zbl0288.57001MR0356061DOI10.1090/S0002-9947-1974-0356061-0
  13. Menger K., Allgemeine Raume und Cartesische Raume Zweite Mitteilung: “Uber umfassendste n -dimensional Mengen", Proc. Akad. Amsterdam 29 (1926), 1125–1128. 
  14. Sierpiński W., Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C.R. Acad. Sci., Paris, 162 (1916), 629–632. 
  15. Štanko M.A., 10.1070/SM1970v012n02ABEH000919, Math USSR Sbornik 12 (1970), 234–254. DOI10.1070/SM1970v012n02ABEH000919
  16. West J., 10.2140/pjm.1970.34.257, Pacific J. Math. 34 (1970), 257–267. Zbl0198.46001MR0277011DOI10.2140/pjm.1970.34.257
  17. Whyburn G., Topological characterization of the Sierpinski curve, Fund. Math. 45 (1958), 320–324. Zbl0081.16904MR0099638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.