Universal meager -sets in locally compact manifolds
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 179-188
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., and Repovš, Dušan. "Universal meager $F_\sigma $-sets in locally compact manifolds." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 179-188. <http://eudml.org/doc/252474>.
@article{Banakh2013,
abstract = {In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\le \omega $, we construct a meager $F_\sigma $-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\rightarrow M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma $-sets in $M$ are ambiently homeomorphic.},
author = {Banakh, Taras O., Repovš, Dušan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition; universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; tame ball; tame decomposition},
language = {eng},
number = {2},
pages = {179-188},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universal meager $F_\sigma $-sets in locally compact manifolds},
url = {http://eudml.org/doc/252474},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Repovš, Dušan
TI - Universal meager $F_\sigma $-sets in locally compact manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 179
EP - 188
AB - In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\le \omega $, we construct a meager $F_\sigma $-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\rightarrow M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma $-sets in $M$ are ambiently homeomorphic.
LA - eng
KW - universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition; universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; tame ball; tame decomposition
UR - http://eudml.org/doc/252474
ER -
References
top- Anderson R.D., On sigma-compact subsets of infinite-dimensional manifolds, unpublished manuscript.
- Banakh T., Morayne M., Rałowski R., Żeberski S., Topologically invariant -ideals on the Hilbert cube, preprint (http://arxiv.org/abs/1302.5658).
- Banakh T., Repovš D., Universal nowhere dense subsets of locally compact manifolds, preprint (http://arxiv.org/abs/1302.5651).
- Bessaga C., Pelczyński A., Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975. Zbl0304.57001MR0478168
- Cannon J.W., A positional characterization of the -dimensional Sierpinski curve in , Fund. Math. 79 (1973), no. 2, 107–112. MR0319203
- Chapman T.A., 10.1090/S0002-9947-1971-0283828-7, Trans. Amer. Math. Soc. 154 (1971), 399–426. Zbl0208.51903MR0283828DOI10.1090/S0002-9947-1971-0283828-7
- Chapman T.A., Lectures on Hilbert Cube Manifolds, American Mathematical Society, Providence, R.I., 1976. Zbl0528.57002MR0423357
- Chigogidze A., Inverse Spectra, North-Holland Publishing Co., Amsterdam, 1996. Zbl0934.54001MR1406565
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Engelking R., Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
- Geoghegan R., Summerhill R., 10.1090/S0002-9904-1972-13086-6, Bull. Amer. Math. Soc. 78 (1972), 1009–1014. Zbl0256.57004MR0312501DOI10.1090/S0002-9904-1972-13086-6
- Geoghegan R., Summerhill R., 10.1090/S0002-9947-1974-0356061-0, Trans. Amer. Math. Soc. 194 (1974), 141–165. Zbl0288.57001MR0356061DOI10.1090/S0002-9947-1974-0356061-0
- Menger K., Allgemeine Raume und Cartesische Raume Zweite Mitteilung: “Uber umfassendste -dimensional Mengen", Proc. Akad. Amsterdam 29 (1926), 1125–1128.
- Sierpiński W., Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C.R. Acad. Sci., Paris, 162 (1916), 629–632.
- Štanko M.A., 10.1070/SM1970v012n02ABEH000919, Math USSR Sbornik 12 (1970), 234–254. DOI10.1070/SM1970v012n02ABEH000919
- West J., 10.2140/pjm.1970.34.257, Pacific J. Math. 34 (1970), 257–267. Zbl0198.46001MR0277011DOI10.2140/pjm.1970.34.257
- Whyburn G., Topological characterization of the Sierpinski curve, Fund. Math. 45 (1958), 320–324. Zbl0081.16904MR0099638
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.