A non-archimedean Dugundji extension theorem
Jerzy Kąkol; Albert Kubzdela; Wiesƚaw Śliwa
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 157-164
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKąkol, Jerzy, Kubzdela, Albert, and Śliwa, Wiesƚaw. "A non-archimedean Dugundji extension theorem." Czechoslovak Mathematical Journal 63.1 (2013): 157-164. <http://eudml.org/doc/252476>.
@article{Kąkol2013,
abstract = {We prove a non-archimedean Dugundji extension theorem for the spaces $C^\{\ast \}(X,\mathbb \{K\})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb \{K\}$. Assuming that $\mathbb \{K\}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^\{\ast \}(Y,\mathbb \{K\})\rightarrow C^\{\ast \}(X,\mathbb \{K\})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb \{K\}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.},
author = {Kąkol, Jerzy, Kubzdela, Albert, Śliwa, Wiesƚaw},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space; Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space},
language = {eng},
number = {1},
pages = {157-164},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A non-archimedean Dugundji extension theorem},
url = {http://eudml.org/doc/252476},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Kąkol, Jerzy
AU - Kubzdela, Albert
AU - Śliwa, Wiesƚaw
TI - A non-archimedean Dugundji extension theorem
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 157
EP - 164
AB - We prove a non-archimedean Dugundji extension theorem for the spaces $C^{\ast }(X,\mathbb {K})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb {K}$. Assuming that $\mathbb {K}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^{\ast }(Y,\mathbb {K})\rightarrow C^{\ast }(X,\mathbb {K})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb {K}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.
LA - eng
KW - Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space; Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space
UR - http://eudml.org/doc/252476
ER -
References
top- Arens, R., 10.2140/pjm.1952.2.11, Pac. J. Math. 2 (1952), 11-22. (1952) Zbl0046.11801MR0049543DOI10.2140/pjm.1952.2.11
- Arkhangel'skij, A. V., 10.1007/978-3-662-07413-8_2, General topology III. Encycl. Math. Sci. 51 (1995), 71-156 Translation from Itogi Nauki tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 51 81-171 (1989). (1989) Zbl0826.54017MR1036525DOI10.1007/978-3-662-07413-8_2
- Borges, C. J. R., 10.2140/pjm.1966.17.1, Pac. J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982DOI10.2140/pjm.1966.17.1
- Groot, J. de, 10.1090/S0002-9939-1956-0080905-8, Proc. Am. Math. Soc. 7 (1956), 948-953. (1956) Zbl0072.40201MR0080905DOI10.1090/S0002-9939-1956-0080905-8
- Dugundji, J., 10.2140/pjm.1951.1.353, Pac. J. Math. 1 (1951), 353-367. (1951) Zbl0043.38105MR0044116DOI10.2140/pjm.1951.1.353
- Ellis, R. L., A non-Archimedean analogue of the Tietze-Urysohn extension theorem, Nederl. Akad. Wet., Proc., Ser. A 70 (1967), 332-333. (1967) Zbl0148.16402MR0212771
- Ellis, R. L., 10.1007/BF01350686, Math. Ann. 186 (1970), 114-122. (1970) Zbl0182.25501MR0261565DOI10.1007/BF01350686
- Engelking, R., General Topology. Rev. and compl. ed, Sigma Series in Pure Mathematics, 6. Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics. Springer, Berlin (2011). (2011) Zbl1229.46001MR2766381
- Gęba, K., Semadeni, Z., 10.4064/sm-19-3-303-320, Stud. Math. 19 (1960), 303-320. (1960) Zbl0094.30401MR0117535DOI10.4064/sm-19-3-303-320
- Gruenhage, G., Hattori, Y., Ohta, H., Dugundji extenders and retracts on generalized ordered spaces, Fundam. Math. 158 (1998), 147-164. (1998) Zbl0919.54010MR1656930
- Heath, R. W., Lutzer, D. J., Zenor, P. L., On continuous extenders, Stud. Topol., Proc. Conf. Charlotte, N. C., 1974 203-213. Zbl0312.54021MR0358675
- Kuratowski, K., Topology. Vol. II, Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw (1968). (1968) MR0259835
- Michael, E., 10.2140/pjm.1953.3.789, Pac. J. Math. 3 (1953), 789-806. (1953) MR0059541DOI10.2140/pjm.1953.3.789
- Perez-Garcia, C., Schikhof, W. H., Localy Convex Spaces Over Non-Archimedean Valued Fields, Cambridge University Press, Cambridge (2010). (2010) MR2598517
- Douwen, E. K. van, 10.1016/0016-660X(75)90002-1, General Topology Appl. 5 (1975), 297-319. (1975) MR0380715DOI10.1016/0016-660X(75)90002-1
- Douwen, E. K. van, Lutzer, D. J., Przymusiński, T. C., 10.2307/2321900, Am. Math. Mon. 84 (1977), 435-441. (1977) MR0458374DOI10.2307/2321900
- Rooij, A. C. M. van, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics. 51. Marcel Dekker, New York (1978). (1978) MR0512894
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.