A non-archimedean Dugundji extension theorem

Jerzy Kąkol; Albert Kubzdela; Wiesƚaw Śliwa

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 1, page 157-164
  • ISSN: 0011-4642

Abstract

top
We prove a non-archimedean Dugundji extension theorem for the spaces C * ( X , 𝕂 ) of continuous bounded functions on an ultranormal space X with values in a non-archimedean non-trivially valued complete field 𝕂 . Assuming that 𝕂 is discretely valued and Y is a closed subspace of X we show that there exists an isometric linear extender T : C * ( Y , 𝕂 ) C * ( X , 𝕂 ) if X is collectionwise normal or Y is Lindelöf or 𝕂 is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace Y of an ultraregular space X is a retract of X .

How to cite

top

Kąkol, Jerzy, Kubzdela, Albert, and Śliwa, Wiesƚaw. "A non-archimedean Dugundji extension theorem." Czechoslovak Mathematical Journal 63.1 (2013): 157-164. <http://eudml.org/doc/252476>.

@article{Kąkol2013,
abstract = {We prove a non-archimedean Dugundji extension theorem for the spaces $C^\{\ast \}(X,\mathbb \{K\})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb \{K\}$. Assuming that $\mathbb \{K\}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^\{\ast \}(Y,\mathbb \{K\})\rightarrow C^\{\ast \}(X,\mathbb \{K\})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb \{K\}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.},
author = {Kąkol, Jerzy, Kubzdela, Albert, Śliwa, Wiesƚaw},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space; Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space},
language = {eng},
number = {1},
pages = {157-164},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A non-archimedean Dugundji extension theorem},
url = {http://eudml.org/doc/252476},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Kąkol, Jerzy
AU - Kubzdela, Albert
AU - Śliwa, Wiesƚaw
TI - A non-archimedean Dugundji extension theorem
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 157
EP - 164
AB - We prove a non-archimedean Dugundji extension theorem for the spaces $C^{\ast }(X,\mathbb {K})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb {K}$. Assuming that $\mathbb {K}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^{\ast }(Y,\mathbb {K})\rightarrow C^{\ast }(X,\mathbb {K})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb {K}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.
LA - eng
KW - Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space; Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space
UR - http://eudml.org/doc/252476
ER -

References

top
  1. Arens, R., 10.2140/pjm.1952.2.11, Pac. J. Math. 2 (1952), 11-22. (1952) Zbl0046.11801MR0049543DOI10.2140/pjm.1952.2.11
  2. Arkhangel'skij, A. V., 10.1007/978-3-662-07413-8_2, General topology III. Encycl. Math. Sci. 51 (1995), 71-156 Translation from Itogi Nauki tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 51 81-171 (1989). (1989) Zbl0826.54017MR1036525DOI10.1007/978-3-662-07413-8_2
  3. Borges, C. J. R., 10.2140/pjm.1966.17.1, Pac. J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982DOI10.2140/pjm.1966.17.1
  4. Groot, J. de, 10.1090/S0002-9939-1956-0080905-8, Proc. Am. Math. Soc. 7 (1956), 948-953. (1956) Zbl0072.40201MR0080905DOI10.1090/S0002-9939-1956-0080905-8
  5. Dugundji, J., 10.2140/pjm.1951.1.353, Pac. J. Math. 1 (1951), 353-367. (1951) Zbl0043.38105MR0044116DOI10.2140/pjm.1951.1.353
  6. Ellis, R. L., A non-Archimedean analogue of the Tietze-Urysohn extension theorem, Nederl. Akad. Wet., Proc., Ser. A 70 (1967), 332-333. (1967) Zbl0148.16402MR0212771
  7. Ellis, R. L., 10.1007/BF01350686, Math. Ann. 186 (1970), 114-122. (1970) Zbl0182.25501MR0261565DOI10.1007/BF01350686
  8. Engelking, R., General Topology. Rev. and compl. ed, Sigma Series in Pure Mathematics, 6. Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
  9. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics. Springer, Berlin (2011). (2011) Zbl1229.46001MR2766381
  10. Gęba, K., Semadeni, Z., 10.4064/sm-19-3-303-320, Stud. Math. 19 (1960), 303-320. (1960) Zbl0094.30401MR0117535DOI10.4064/sm-19-3-303-320
  11. Gruenhage, G., Hattori, Y., Ohta, H., Dugundji extenders and retracts on generalized ordered spaces, Fundam. Math. 158 (1998), 147-164. (1998) Zbl0919.54010MR1656930
  12. Heath, R. W., Lutzer, D. J., Zenor, P. L., On continuous extenders, Stud. Topol., Proc. Conf. Charlotte, N. C., 1974 203-213. Zbl0312.54021MR0358675
  13. Kuratowski, K., Topology. Vol. II, Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw (1968). (1968) MR0259835
  14. Michael, E., 10.2140/pjm.1953.3.789, Pac. J. Math. 3 (1953), 789-806. (1953) MR0059541DOI10.2140/pjm.1953.3.789
  15. Perez-Garcia, C., Schikhof, W. H., Localy Convex Spaces Over Non-Archimedean Valued Fields, Cambridge University Press, Cambridge (2010). (2010) MR2598517
  16. Douwen, E. K. van, 10.1016/0016-660X(75)90002-1, General Topology Appl. 5 (1975), 297-319. (1975) MR0380715DOI10.1016/0016-660X(75)90002-1
  17. Douwen, E. K. van, Lutzer, D. J., Przymusiński, T. C., 10.2307/2321900, Am. Math. Mon. 84 (1977), 435-441. (1977) MR0458374DOI10.2307/2321900
  18. Rooij, A. C. M. van, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics. 51. Marcel Dekker, New York (1978). (1978) MR0512894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.