Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses
Changjin Xu; Qianhong Zhang; Maoxin Liao
Applications of Mathematics (2013)
- Volume: 58, Issue: 3, page 309-328
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topXu, Changjin, Zhang, Qianhong, and Liao, Maoxin. "Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses." Applications of Mathematics 58.3 (2013): 309-328. <http://eudml.org/doc/252479>.
@article{Xu2013,
abstract = {In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established.},
author = {Xu, Changjin, Zhang, Qianhong, Liao, Maoxin},
journal = {Applications of Mathematics},
keywords = {competitive system; toxic substance; periodic solution; impulse; coincidence degree theory; competitive system; toxic substance; periodic solution; impulse; coincidence degree theory},
language = {eng},
number = {3},
pages = {309-328},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses},
url = {http://eudml.org/doc/252479},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Xu, Changjin
AU - Zhang, Qianhong
AU - Liao, Maoxin
TI - Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 309
EP - 328
AB - In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established.
LA - eng
KW - competitive system; toxic substance; periodic solution; impulse; coincidence degree theory; competitive system; toxic substance; periodic solution; impulse; coincidence degree theory
UR - http://eudml.org/doc/252479
ER -
References
top- Barbălat, I., Systèmes d'équations différentielles d'oscillations non linéaires, Acad. Républ. Popul. Roum., Rev. Math. Pur. Appl. 4 (1959), French 267-270. (1959) Zbl0090.06601MR0111896
- Chen, F., 10.1016/j.amc.2006.01.055, Appl. Math. Comput. 181 (2006), 685-693. (2006) Zbl1163.34030MR2270525DOI10.1016/j.amc.2006.01.055
- Chen, S., Wang, T., Zhang, J., Positive periodic solution for non-autonomous competition Lotka-Volterra patch system with time delay, Nonlinear Anal., Real World Appl. 5 (2004), 409-419. (2004) Zbl1093.34033MR2059213
- Dong, L., Chen, L., Shi, P., 10.1016/j.chaos.2006.01.003, Chaos Solitons Fractals 32 (2007), 1916-1926. (2007) Zbl1168.34360MR2299102DOI10.1016/j.chaos.2006.01.003
- Fan, M., Wang, K., Jiang, D., 10.1016/S0025-5564(99)00022-X, Math. Biosci. 160 (1999), 47-61. (1999) Zbl0964.34059MR1704338DOI10.1016/S0025-5564(99)00022-X
- Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Springer Berlin (1977). (1977) MR0637067DOI10.1007/BFb0089537
- Li, Z., Chen, F., 10.1016/j.cam.2009.02.004, J. Comput. Appl. Math. 231 (2009), 143-153. (2009) Zbl1165.92322MR2532657DOI10.1016/j.cam.2009.02.004
- Liu, Z., Chen, L., 10.1016/j.chaos.2005.12.004, Chaos Solitons Fractals 32 (2007), 1703-1712. (2007) Zbl1137.34017MR2299084DOI10.1016/j.chaos.2005.12.004
- Liu, Z., Hui, J., Wu, J., 10.1007/s10910-008-9513-1, J. Math. Chem. 46 (2009), 1213-1231. (2009) Zbl1197.92046MR2545587DOI10.1007/s10910-008-9513-1
- Nie, L., Peng, J., Teng, Z., 10.1016/j.mcm.2008.05.004, Math. Comput. Modelling 49 (2009), 295-306. (2009) Zbl1165.34373MR2480052DOI10.1016/j.mcm.2008.05.004
- Shen, J., Li, J., Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Nonlinear Anal., Real World Appl. 10 (2009), 227-243. (2009) Zbl1154.34372MR2451704
- Song, X., Chen, L., Periodic solution of a delay differential equation of plankton allelopathy, Acta Math. Sci., Ser. A, Chin. Ed. 23 (2003), 8-13 Chinese. (2003) Zbl1036.34082MR1958183
- Tang, X. H., Zou, X., 10.1016/S0022-0396(03)00042-1, J. Differ. Equations 192 (2003), 502-535. (2003) Zbl1035.34085MR1990850DOI10.1016/S0022-0396(03)00042-1
- Tang, X., Cao, D., Zou, X., 10.1016/j.jde.2006.06.007, J. Differ. Equations 228 (2006), 580-610. (2006) Zbl1113.34052MR2289545DOI10.1016/j.jde.2006.06.007
- Xia, Y., Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance, Nonlinear Anal., Real World Appl. 8 (2007), 204-221. (2007) Zbl1121.34075MR2268079
- Xu, R., Chaplain, M. A. J., Davidson, F. A., 10.1016/S0096-3003(02)00918-9, Appl. Math. Comput. 148 (2004), 537-560. (2004) Zbl1048.34119MR2015390DOI10.1016/S0096-3003(02)00918-9
- Yan, J., Zhao, A., 10.1006/jmaa.1998.6093, J. Math. Anal. Appl. 227 (1998), 187-194. (1998) MR1652915DOI10.1006/jmaa.1998.6093
- Yoshizawa, T., Stability Theory by Ljapunov's Second Method, Publications of the Mathematical Society of Japan. Vol. 9, The Mathematical Society of Japan Tokyo (1966). (1966) MR0208086
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.