Extending the applicability of Newton's method using nondiscrete induction
Ioannis K. Argyros; Saïd Hilout
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 115-141
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topArgyros, Ioannis K., and Hilout, Saïd. "Extending the applicability of Newton's method using nondiscrete induction." Czechoslovak Mathematical Journal 63.1 (2013): 115-141. <http://eudml.org/doc/252486>.
@article{Argyros2013,
abstract = {We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984. Under the same computational cost as before, we provide: weaker sufficient convergence conditions; tighter error estimates on the distances involved and more precise information on the location of the solution. Numerical examples are also provided in this study.},
author = {Argyros, Ioannis K., Hilout, Saïd},
journal = {Czechoslovak Mathematical Journal},
keywords = {Newton's method; Banach space; rate of convergence; semilocal convergence; nondiscrete mathematical induction; estimate function; Newton's method; Banach space; rate of convergence; semilocal convergence; nondiscrete mathematical induction; estimate function; nonlinear operator equation; center-Lipschitz conditions; error estimates; numerical examples},
language = {eng},
number = {1},
pages = {115-141},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending the applicability of Newton's method using nondiscrete induction},
url = {http://eudml.org/doc/252486},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Argyros, Ioannis K.
AU - Hilout, Saïd
TI - Extending the applicability of Newton's method using nondiscrete induction
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 115
EP - 141
AB - We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984. Under the same computational cost as before, we provide: weaker sufficient convergence conditions; tighter error estimates on the distances involved and more precise information on the location of the solution. Numerical examples are also provided in this study.
LA - eng
KW - Newton's method; Banach space; rate of convergence; semilocal convergence; nondiscrete mathematical induction; estimate function; Newton's method; Banach space; rate of convergence; semilocal convergence; nondiscrete mathematical induction; estimate function; nonlinear operator equation; center-Lipschitz conditions; error estimates; numerical examples
UR - http://eudml.org/doc/252486
ER -
References
top- Amat, S., Bermúdez, C., Busquier, S., Gretay, J., 10.1216/rmjm/1181068756, Rocky Mt. J. Math. 37 (2007), 359-369. (2007) Zbl1140.65040MR2333375DOI10.1216/rmjm/1181068756
- Amat, S., Busquier, S., 10.1016/j.jmaa.2007.02.052, J. Math. Anal. Appl. 336 (2007), 243-261. (2007) Zbl1128.65036MR2348504DOI10.1016/j.jmaa.2007.02.052
- Amat, S., Busquier, S., Gutiérrez, J. M., Hernández, M. A., 10.1016/j.cam.2007.07.022, J. Comput. Appl. Math. 220 (2008), 17-21. (2008) Zbl1149.65035MR2444150DOI10.1016/j.cam.2007.07.022
- Argyros, I. K., The Theory and Application of Abstract Polynomial Equations, St. Lucie/CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, USA (1998). (1998)
- Argyros, I. K., 10.1016/j.jmaa.2004.04.008, J. Math. Anal. Appl. 298 (2004), 374-397. (2004) Zbl1061.47052MR2086964DOI10.1016/j.jmaa.2004.04.008
- Argyros, I. K., 10.1016/j.cam.2004.01.029, J. Comput. Appl. Math. 169 (2004), 315-332. (2004) Zbl1055.65066MR2072881DOI10.1016/j.cam.2004.01.029
- Argyros, I. K., 10.1016/j.na.2005.02.113, Nonlinear Anal., Theory Methods Appl. 62 (2005), 179-194. (2005) Zbl1072.65079MR2139363DOI10.1016/j.na.2005.02.113
- Argyros, I. K., Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point, Rev. Anal. Numér. Théor. Approx. 36 (2007), 123-137. (2007) Zbl1199.65179MR2498828
- Argyros, I. K., Computational Theory of Iterative Methods, Studies in Computational Mathematics 15. Elsevier, Amsterdam (2007). (2007) Zbl1147.65313MR2356038
- Argyros, I. K., 10.1016/j.cam.2008.08.042, J. Comput. Appl. Math. 228 (2009), 115-122. (2009) Zbl1168.65349MR2514268DOI10.1016/j.cam.2008.08.042
- Argyros, I. K., 10.1090/S0025-5718-2010-02398-1, Math. Comput. 80 (2011), 327-343. (2011) Zbl1211.65057MR2728982DOI10.1090/S0025-5718-2010-02398-1
- Argyros, I. K., Hilout, S., Efficient Methods for Solving Equations and Variational Inequalities, Polimetrica Publisher, Milano, Italy (2009). (2009) MR2424657
- Argyros, I. K., Hilout, S., Enclosing roots of polynomial equations and their applications to iterative processes, Surv. Math. Appl. 4 (2009), 119-132. (2009) Zbl1205.26023MR2558651
- Argyros, I. K., Hilout, S., 10.1016/j.cam.2010.04.014, J. Comput. Appl. Math. 234 (2010), 2993-3006. (2010) Zbl1195.65075MR2652146DOI10.1016/j.cam.2010.04.014
- Argyros, I. K., Hilout, S., Tabatabai, M. A., Mathematical Modelling with Applications in Biosciences and Engineering, Nova Publishers, New York, 2011. MR2895345
- Bi, W., Wu, Q., Ren, H., Convergence ball and error analysis of the Ostrowski-Traub method, Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 374-378. (2010) Zbl1240.65167MR2679357
- Cătinaş, E., 10.1090/S0025-5718-04-01646-1, Math. Comput. 74 (2005), 291-301. (2005) Zbl1054.65050MR2085412DOI10.1090/S0025-5718-04-01646-1
- Chen, X., Yamamoto, T., 10.1080/01630568908816289, Numer. Funct. Anal. Optimization 10 (1989), 37-48. (1989) Zbl0645.65028MR0978801DOI10.1080/01630568908816289
- Deuflhard, P., Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics 35. Springer, Berlin (2004). (2004) Zbl1056.65051MR2063044
- Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Romero, N., Rubio, M. J., The Newton method: from Newton to Kantorovich, Spanish Gac. R. Soc. Mat. Esp. 13 (2010), 53-76. (2010) Zbl1195.65001MR2647925
- Ezquerro, J. A., Hernández, M. A., 10.1016/j.cam.2005.10.023, J. Comput. Appl. Math. 197 (2006), 53-61. (2006) Zbl1106.65048MR2256051DOI10.1016/j.cam.2005.10.023
- Ezquerro, J. A., Hernández, M. A., 10.1090/S0025-5718-09-02193-0, Math. Comput. 78 (2009), 1613-1627. (2009) Zbl1198.65096MR2501066DOI10.1090/S0025-5718-09-02193-0
- Ezquerro, J. A., Hernández, M. A., Romero, N., 10.1016/j.amc.2009.03.072, Appl. Math. Comput. 214 (2009), 142-154. (2009) Zbl1173.65032MR2541053DOI10.1016/j.amc.2009.03.072
- Gragg, W. B., Tapia, R. A., 10.1137/0711002, SIAM J. Numer. Anal. 11 (1974), 10-13. (1974) Zbl0284.65042MR0343594DOI10.1137/0711002
- Hernández, M. A., 10.1016/S0377-0427(01)00393-4, J. Comput. Appl. Math. 137 (2001), 201-205. (2001) Zbl0992.65057MR1865886DOI10.1016/S0377-0427(01)00393-4
- Kantorovich, L. V., Akilov, G. P., Functional Analysis. Transl. from the Russian, Pergamon Press, Oxford (1982). (1982) Zbl0484.46003MR0664597
- Krishnan, S., Manocha, D., 10.1145/237748.237751, ACM Trans. on Graphics. 16 (1997), 74-106. (1997) DOI10.1145/237748.237751
- Lukács, G., The generalized inverse matrix and the surface-surface intersection problem, Theory and Practice of Geometric Modeling, Lect. Conf., Blaubeuren/FRG 1988 167-185 (1989). (1989) Zbl0692.68076MR1042329
- Ortega, J. M., Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Computer Science and Applied Mathematics. Academic Press, New York (1970). (1970) Zbl0241.65046MR0273810
- Ostrowski, A. M., Sur la convergence et l'estimation des erreurs dans quelques procédés de résolution des équations numériques, French Gedenkwerk D. A. Grave, Moskau 213-234 (1940). (1940) Zbl0023.35302MR0004377
- Ostrowski, A. M., La méthode de Newton dans les espaces de Banach. (The Newton method in Banach spaces), French C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1251-1253. (1971) Zbl0228.65041MR0285110
- Ostrowski, A. M., Solution of Equations in Euclidean and Banach Spaces. 3rd ed. of solution of equations and systems of equations, Pure and Applied Mathematics, 9. Academic Press, New York (1973). (1973) Zbl0304.65002MR0359306
- Păvăloiu, I., Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed. Cluj-Napoca (1976). (1976)
- Potra, F. A., A characterization of the divided differences of an operator which can be represented by Riemann integrals, Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 251-253. (1980) Zbl0523.65043MR0651780
- Potra, F. A., An application of the induction method of V. Pták to the study of regula falsi, Apl. Mat. 26 (1981), 111-120. (1981) Zbl0486.65038MR0612668
- Potra, F. A., The rate of convergence of a modified Newton's process, Apl. Mat. 26 (1981), 13-17. (1981) Zbl0486.65039MR0602398
- Potra, F. A., 10.1007/BF01396443, Numer. Math. 38 (1982), 427-445. (1982) Zbl0465.65033MR0654108DOI10.1007/BF01396443
- Potra, F. A., 10.1007/BFb0069378, Iterative solution of nonlinear systems of equations, Proc. Meeting, Oberwolfach 1982, Lect. Notes Math. 953 125-137. Zbl0507.65020MR0678615DOI10.1007/BFb0069378
- Potra, F. A., On the a posteriori error estimates for Newton's method, Beitr. Numer. Math. 12 (1984), 125-138. (1984) MR0732159
- Potra, F. A., 10.4064/-13-1-607-621, Computational Mathematics, Banach Cent. Publ. 13 607-621 (1984). (1984) Zbl0569.65042MR0798124DOI10.4064/-13-1-607-621
- Potra, F. A., Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84. (1985) Zbl0581.47050MR0816258
- Potra, F. A., Pták, V., 10.1007/BF01463998, Numer. Math. 34 (1980), 63-72. (1980) Zbl0434.65034MR0560794DOI10.1007/BF01463998
- Potra, F. A., Pták, V., 10.7146/math.scand.a-11866, Math. Scand. 46 (1980), 236-250. (1980) Zbl0423.65034MR0591604DOI10.7146/math.scand.a-11866
- Potra, F. A., Pták, V., 10.1080/01630568008816049, Numer. Funct. Anal. Optimization 2 (1980), 107-120. (1980) Zbl0472.65049MR0580387DOI10.1080/01630568008816049
- Potra, F. A., Pták, V., 10.1007/BF01396659, Numer. Math. 36 (1981), 333-346. (1981) Zbl0478.65039MR0613073DOI10.1007/BF01396659
- Potra, F. A., Pták, V., Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston (1984). (1984) Zbl0549.41001MR0754338
- Proinov, P. D., 10.1016/j.jco.2008.05.006, J. Complexity 25 (2009), 38-62. (2009) Zbl1158.65040MR2475307DOI10.1016/j.jco.2008.05.006
- Proinov, P. D., 10.1016/j.jco.2009.05.001, J. Complexity 26 (2010), 3-42. (2010) Zbl1185.65095MR2574570DOI10.1016/j.jco.2009.05.001
- Pták, V., 10.1007/BF02052841, Math. Ann. 163 (1966), 95-104. (1966) Zbl0138.37602MR0192316DOI10.1007/BF02052841
- Pták, V., A quantitative refinement of the closed graph theorem, Czech. Math. J. 24 (1974), 503-506. (1974) Zbl0315.46007MR0348431
- Pták, V., 10.1007/BF01411490, Manuscr. Math. 13 (1974), 109-130. (1974) Zbl0286.46008MR0348430DOI10.1007/BF01411490
- Pták, V., Deux théoremes de factorisation, C. R. Acad. Sci., Paris, Sér. A 278 (1974), 1091-1094. (1974) Zbl0277.46047MR0341096
- Pták, V., Concerning the rate of convergence of Newton's process, Commentat. Math. Univ. Carol. 16 (1975), 699-705. (1975) Zbl0314.65023MR0398092
- Pták, V., A modification of Newton's method, Čas. Pěst. Mat. 101 (1976), 188-194. (1976) Zbl0328.46013MR0443326
- Pták, V., 10.1016/0024-3795(76)90098-7, Linear Algebra Appl. 13 (1976), 223-238. (1976) Zbl0323.46005MR0394119DOI10.1016/0024-3795(76)90098-7
- Pták, V., 10.1007/BF01399416, Numer. Math. 25 (1976), 279-285. (1976) Zbl0304.65037MR0478587DOI10.1007/BF01399416
- Pták, V., 10.1007/BFb0068681, Gen. Topol. Relat. mod. Anal. Algebra IV, Proc. 4th Prague topol. Symp. 1976, Part A, Lect. Notes Math. 609 166-178 (1977). (1977) Zbl0367.46007MR0487618DOI10.1007/BFb0068681
- Pták, V., 10.1051/m2an/1977110302791, Numér. 11 (1977), 279-286. (1977) MR0474799DOI10.1051/m2an/1977110302791
- Pták, V., Stability of exactness, Commentat. math., spec. Vol. II, dedic. L. Orlicz (1979), 283-288. (1979) Zbl0445.46003MR0552012
- Pták, V., 10.1080/01630567908816015, Numer. Funct. Anal. Optimization 1 (1979), 255-271. (1979) Zbl0441.46010MR0537831DOI10.1080/01630567908816015
- Pták, V., 10.4064/sm-65-3-279-285, Stud. Math. 65 (1979), 279-285. (1979) Zbl0342.46036MR0567080DOI10.4064/sm-65-3-279-285
- Ren, H., Wu, Q., 10.1016/j.amc.2006.09.111, Appl. Math. Comput. 188 (2007), 281-285. (2007) Zbl1118.65044MR2327116DOI10.1016/j.amc.2006.09.111
- Rheinboldt, W. C., 10.1137/0705003, SIAM J. Numer. Anal. 5 (1968), 42-63. (1968) Zbl0155.46701MR0225468DOI10.1137/0705003
- Tapia, R. A., 10.2307/2316909, Am. Math. Mon. 78 (1971), 389-392. (1971) Zbl0215.27404MR1536290DOI10.2307/2316909
- Wu, Q., Ren, H., 10.1016/j.amc.2006.11.043, Appl. Math. Comput. 188 (2007), 1790-1793. (2007) Zbl1121.65052MR2335032DOI10.1016/j.amc.2006.11.043
- Yamamoto, T., 10.1007/BF01400355, Numer. Math. 51 (1987), 545-557. (1987) Zbl0633.65049MR0910864DOI10.1007/BF01400355
- Zabrejko, P. P., Nguen, D. F., 10.1080/01630568708816254, Numer. Funct. Anal. Optimization 9 (1987), 671-684. (1987) Zbl0627.65069MR0895991DOI10.1080/01630568708816254
- Zinčenko, A. I., Some approximate methods of solving equations with non-differentiable operators, Ukrainian Dopovidi Akad. Nauk Ukraïn. RSR (1963), 156-161. (1963) MR0160096
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.