An application of the induction method of V. Pták to the study of regula falsi
Aplikace matematiky (1981)
- Volume: 26, Issue: 2, page 111-120
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPotra, Florian-Alexandru. "An application of the induction method of V. Pták to the study of regula falsi." Aplikace matematiky 26.2 (1981): 111-120. <http://eudml.org/doc/15187>.
@article{Potra1981,
abstract = {In this paper we introduce the notion of "$p$-dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form $X_\{n+1\}=F(x_\{n-p+1\},X_\{n-p+2\},\ldots , x_n)$, $n=0,1,2,\ldots $. As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.},
author = {Potra, Florian-Alexandru},
journal = {Aplikace matematiky},
keywords = {induction method; regula falsi; $p$-dimensional rate of convergence; secant method; iterative procedure; induction method; regula falsi; p-dimensional rate of convergence; secant method; iterative procedure},
language = {eng},
number = {2},
pages = {111-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An application of the induction method of V. Pták to the study of regula falsi},
url = {http://eudml.org/doc/15187},
volume = {26},
year = {1981},
}
TY - JOUR
AU - Potra, Florian-Alexandru
TI - An application of the induction method of V. Pták to the study of regula falsi
JO - Aplikace matematiky
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 2
SP - 111
EP - 120
AB - In this paper we introduce the notion of "$p$-dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form $X_{n+1}=F(x_{n-p+1},X_{n-p+2},\ldots , x_n)$, $n=0,1,2,\ldots $. As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.
LA - eng
KW - induction method; regula falsi; $p$-dimensional rate of convergence; secant method; iterative procedure; induction method; regula falsi; p-dimensional rate of convergence; secant method; iterative procedure
UR - http://eudml.org/doc/15187
ER -
References
top- M. Balazs G. Goldner, On existence of divided differences in linear spaces, Revue d'analyse numérique et de la théorie de l'approximation, 2 (1973), 5-9. (1973) MR0378398
- M. Fréchet, 10.24033/asens.766, Ann. Ec. Norm. Sup, 42, (1925) 293-323. (1925) MR1509268DOI10.24033/asens.766
- T. Popoviciu, Introduction à Ia théorie des differences divisées, Bull. Math. Soc. Roum. Sci., 42 (1941), 65-78. (1941) MR0013171
- V. Pták, 10.1007/BF01399416, Numer. Math., 25 (1976), 279 - 285. (1976) Zbl0304.65037MR0478587DOI10.1007/BF01399416
- V. Pták, Nondiscrete mathematical induction and iterative existence proofs, Linear algebra and its applications 13 (1976), 233 - 238. (1976) MR0394119
- V. Pták, 10.1051/m2an/1977110302791, R. A.I. R. O. , Analyse Numérique 11,3 (1977), 279-286. (1977) MR0474799DOI10.1051/m2an/1977110302791
- J. Schmidt, 10.1002/zamm.19630430102, I, II, Z. Angew. Math. Mech., 43 (1963), p. 1-8, 97-11.0. (1963) MR0147930DOI10.1002/zamm.19630430102
- J. Schröder, 10.1007/BF01899031, Arch. Math. (Basel) 7 (1956), 471-484. (1956) MR0088047DOI10.1007/BF01899031
- А. С. Сергеев, О метоге хорд, Сибир. Матем. Ж. 2 (1961), 282-289. (1961) Zbl1160.68305MR0130517
- С. Улъм, Об обобщенных разделенных разностях, I, II И АН ЭССР, Физика, математика, 16 (1967) р. 13-26, 146-156. (1967) Zbl1103.35360MR0215489
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.