The sup = max problem for the extent of generalized metric spaces
Yasushi Hirata; Yukinobu Yajima
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 245-257
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHirata, Yasushi, and Yajima, Yukinobu. "The sup = max problem for the extent of generalized metric spaces." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 245-257. <http://eudml.org/doc/252490>.
@article{Hirata2013,
abstract = {It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.},
author = {Hirata, Yasushi, Yajima, Yukinobu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extent; Lindelöf degree; $\Sigma $-space; strict $p$-space; semi-stratifiable; extent; Lindelöf degree; -space; strict -space; semi-stratifiable},
language = {eng},
number = {2},
pages = {245-257},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The sup = max problem for the extent of generalized metric spaces},
url = {http://eudml.org/doc/252490},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Hirata, Yasushi
AU - Yajima, Yukinobu
TI - The sup = max problem for the extent of generalized metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 245
EP - 257
AB - It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
LA - eng
KW - extent; Lindelöf degree; $\Sigma $-space; strict $p$-space; semi-stratifiable; extent; Lindelöf degree; -space; strict -space; semi-stratifiable
UR - http://eudml.org/doc/252490
ER -
References
top- Aull C.E., 10.1017/S0004972700042933, Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl0255.54015MR0372817DOI10.1017/S0004972700042933
- Burke D.K., 10.2140/pjm.1970.35.285, Pacific J. Math. 35 (1970), 285–296. Zbl0204.55703MR0278255DOI10.2140/pjm.1970.35.285
- Creed G.D., 10.2140/pjm.1970.32.47, Pacific J. Math. 32 (1970), 47–54. MR0254799DOI10.2140/pjm.1970.32.47
- Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl0794.54034MR0776629
- Hajnal A., Juhász I., 10.1016/1385-7258(69)90022-5, Indag. Math. 31 (1969), 18–30. Zbl0169.53901MR0264585DOI10.1016/1385-7258(69)90022-5
- Hajnal A., Juhász I., 10.1007/BF01894566, Acta Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl0184.26401MR0242103DOI10.1007/BF01894566
- Jiang S., Every strict p-space is -refinable, Topology Proc. 11 (1986), 309–316. Zbl0637.54024MR0945506
- Jones F.B., 10.1090/S0002-9904-1937-06622-5, Bull. Amer. Math. Soc. 43 (1937), 671–677. MR1563615DOI10.1090/S0002-9904-1937-06622-5
- Juhász I., Cardinal Functions in Topology, Mathematisch Centrum, Amsterdam, 1971. MR0340021
- Juhász I., Cardinal Functions in Topology – Ten Years Later, Mathematisch Centrum, Amsterdam, 1980. Zbl0479.54001MR0576927
- Kunen K., Roitman J., 10.2140/pjm.1977.70.199, Pacific J. Math. 70 (1977), 199–205. Zbl0375.54004MR0462949DOI10.2140/pjm.1977.70.199
- Nagami K., -spaces, Fund. Math. 65 (1969), 169–192. MR0257963
- Okuyama A., 10.2140/pjm.1972.42.485, Pacific J. Math 42 (1972), 485–495. MR0313995DOI10.2140/pjm.1972.42.485
- Roitman J., 10.1016/0016-660X(78)90020-X, General Topology and Appl. 8 (1978), 85–91. Zbl0398.54001MR0493957DOI10.1016/0016-660X(78)90020-X
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.