The sup = max problem for the extent of generalized metric spaces

Yasushi Hirata; Yukinobu Yajima

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 245-257
  • ISSN: 0010-2628

Abstract

top
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

How to cite

top

Hirata, Yasushi, and Yajima, Yukinobu. "The sup = max problem for the extent of generalized metric spaces." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 245-257. <http://eudml.org/doc/252490>.

@article{Hirata2013,
abstract = {It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.},
author = {Hirata, Yasushi, Yajima, Yukinobu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extent; Lindelöf degree; $\Sigma $-space; strict $p$-space; semi-stratifiable; extent; Lindelöf degree; -space; strict -space; semi-stratifiable},
language = {eng},
number = {2},
pages = {245-257},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The sup = max problem for the extent of generalized metric spaces},
url = {http://eudml.org/doc/252490},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Hirata, Yasushi
AU - Yajima, Yukinobu
TI - The sup = max problem for the extent of generalized metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 245
EP - 257
AB - It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
LA - eng
KW - extent; Lindelöf degree; $\Sigma $-space; strict $p$-space; semi-stratifiable; extent; Lindelöf degree; -space; strict -space; semi-stratifiable
UR - http://eudml.org/doc/252490
ER -

References

top
  1. Aull C.E., 10.1017/S0004972700042933, Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl0255.54015MR0372817DOI10.1017/S0004972700042933
  2. Burke D.K., 10.2140/pjm.1970.35.285, Pacific J. Math. 35 (1970), 285–296. Zbl0204.55703MR0278255DOI10.2140/pjm.1970.35.285
  3. Creed G.D., 10.2140/pjm.1970.32.47, Pacific J. Math. 32 (1970), 47–54. MR0254799DOI10.2140/pjm.1970.32.47
  4. Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl0794.54034MR0776629
  5. Hajnal A., Juhász I., 10.1016/1385-7258(69)90022-5, Indag. Math. 31 (1969), 18–30. Zbl0169.53901MR0264585DOI10.1016/1385-7258(69)90022-5
  6. Hajnal A., Juhász I., 10.1007/BF01894566, Acta Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl0184.26401MR0242103DOI10.1007/BF01894566
  7. Jiang S., Every strict p-space is θ -refinable, Topology Proc. 11 (1986), 309–316. Zbl0637.54024MR0945506
  8. Jones F.B., 10.1090/S0002-9904-1937-06622-5, Bull. Amer. Math. Soc. 43 (1937), 671–677. MR1563615DOI10.1090/S0002-9904-1937-06622-5
  9. Juhász I., Cardinal Functions in Topology, Mathematisch Centrum, Amsterdam, 1971. MR0340021
  10. Juhász I., Cardinal Functions in Topology – Ten Years Later, Mathematisch Centrum, Amsterdam, 1980. Zbl0479.54001MR0576927
  11. Kunen K., Roitman J., 10.2140/pjm.1977.70.199, Pacific J. Math. 70 (1977), 199–205. Zbl0375.54004MR0462949DOI10.2140/pjm.1977.70.199
  12. Nagami K., 𝛴 -spaces, Fund. Math. 65 (1969), 169–192. MR0257963
  13. Okuyama A., 10.2140/pjm.1972.42.485, Pacific J. Math 42 (1972), 485–495. MR0313995DOI10.2140/pjm.1972.42.485
  14. Roitman J., 10.1016/0016-660X(78)90020-X, General Topology and Appl. 8 (1978), 85–91. Zbl0398.54001MR0493957DOI10.1016/0016-660X(78)90020-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.